Abstract
We explore modifications of the standard cutting-plane approach for minimizing a convex nondifferentiable function, given by an oracle, over a combinatorial set, which is the basis of the celebrated (generalized) Benders’ decomposition approach. Specifically, we combine stabilization—in two ways: via a trust region in the \(L_1\) norm, or via a level constraint—and inexact function computation (solution of the subproblems). Managing both features simultaneously requires a nontrivial convergence analysis; we provide it under very weak assumptions on the handling of the two parameters (target and accuracy) controlling the informative on-demand inexact oracle corresponding to the subproblem, strengthening earlier know results. This yields new versions of Benders’ decomposition, whose numerical performance are assessed on a class of hybrid robust and chance-constrained problems that involve a random variable with an underlying discrete distribution, are convex in the decision variable, but have neither separable nor linear probabilistic constraints. The numerical results show that the approach has potential, especially for instances that are difficult to solve with standard techniques.
Similar content being viewed by others
References
Baena, D., Castro, J., Frangioni, A.: Stabilized Benders methods for large-scale combinatorial optimization: applications to data privacy (2015)
Bao, X., Sahinidis, N., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009)
Ben Amor, H., Desrosiers, J., Frangioni, A.: On the choice of explicit stabilizing terms in column generation. Discret. Appl. Math. 157(6), 1167–1184 (2009)
Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)
Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)
Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962)
Boyd, S., Vandenberghe, L.: Convex optimization. http://www.stanford.edu/~boyd/cvxbook ISBN 0 521 83378 7 (2006)
Calafiore, G.C., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math.l Program. 102(1), 25–46 (2005)
Caroe, C.C., Tind, J.: L-shaped decomposition of two-stage stochastic programs with integer recourse. Math. Program. 83, 451–464 (1998)
Codato, G., Fischetti, M.: Combinatorial benders’ cuts for mixed-integer linear programming. Oper. Res. 54(4), 756–766 (2006)
Costa, A.M.: A survey on benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)
d’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: On interval-subgradient cuts and no-good cuts. Oper. Res. Lett. 38, 341–345 (2010)
d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient methods. SIAM J. Optim. 20(1), 357–386 (2009)
de Klerk, E.: The complexity of optimizing over a simplex, hypercube or sphere: a short survey. Central Eur. J. Oper. Res. 16(2), 111–125 (2008)
de Oliveira, W.: Regularized nonsmooth optimization methods for convex minlp problems. TOP pp. 1–28 (2016). doi:10.1007/s11750-016-0413-4
de Oliveira, W., Sagastizábal, C.: Level bundle methods for oracles with on demand accuracy. Optim. Methods Softw. 29(6), 1180–1209 (2014)
de Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified analysis for inexact oracles. Math. Prog. Ser. B 148, 241–277 (2014)
Dentcheva, D.: Optimization models with probabilistic constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design Under Uncertainty, 1st edn, pp. 49–97. Springer, Newe York (2006)
Dentcheva, D.: Optimisation models with probabilistic constraints. In: Shapiro, A., Dentcheva, D., Ruszczyński, A. (eds.) Lectures on Stochastic Programming. Modeling and Theory, MPS-SIAM series on optimization, vol. 9, pp. 87–154. SIAM and MPS, Philadelphia (2009)
Dentcheva, D., Lai, B., Ruszczyński, A.: Dual methods for probabilistic optimization problems. Math. Methods Oper. Res. 60(2), 331–346 (2004)
Dentcheva, D., Martinez, G.: Regularization methods for optimization problems with probabilistic constraints. Math. Program. (Ser. A) 138(1–2), 223–251 (2013)
Dentcheva, D., Prékopa, A., Ruszczyński, A.: Concavity and efficient points for discrete distributions in stochastic programming. Math. Program. 89, 55–77 (2000)
Dinter, J.V., Rebenack, S., Kallrath, J., Denholm, P., Newman, A.: The unit commitment model with concave emissions costs: a hybrid benders’ decomposition with nonconvex master problems. Ann. Oper. Res. 210(1), 361–386 (2013)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002). doi:10.1007/s101070100263
Fábián, C.: Bundle-type methods for inexact data. In: Csendes, T., Rapcsk, T. (eds.), Proceedings of the XXIV Hungarian Operations Researc Conference (Veszprém, 1999), vol. 8 (pecial issue), pp. 35–55 (2000)
Fábián, C., Wolf, C., Koberstein, A., Suhl, L.: Risk-averse optimization in two-stage stochastic models: computational aspects and a study. SIAM J. Optim. 25(1), 28–52 (2015)
Feltenmark, S., Kiwiel, K.: Dual applications of proximal bundle methods, including lagrangian relaxation of nonconvex problems. SIAM J. Optim. 10(3), 697–721 (2000)
Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)
Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders cuts. Math. Program. 124(1), 175–182 (2010)
Floudas, C.A.: Generalized benders decomposition. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 1163–1174. Springer, New York (2009)
Frangioni, A.: Generalized Bundle methods. SIAM J. Optim. 13(1), 117–156 (2002)
Frangioni, A., Gendron, B.: A stabilized structured dantzig-wolfe decomposition method. Math. Program. B 104(1), 45–76 (2013)
Frangioni, A., Gorgone, E.: Generalized bundle methods for sum-functions with “easy” components: Applications to multicommodity network design. Math. Program. 145(1), 133–161 (2014)
Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric polytope. Math. Program. 104(2–3), 375–388 (2005)
Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)
Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II, 2nd edn. No. 306 in Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1996)
Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Math. Program. 96, 33–60 (2003)
Kelley, J.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)
Kolokolov, A., Kosarev, N.: Analysis of decomposition algorithms with benders cuts for \(p\)-median problem. J. Math. Model. Algorithms 5(2), 189–199 (2006)
Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1), 111–147 (1995)
Li, X., Chen, Y., Barton, P.I.: Nonconvex generalized benders decomposition with piecewise convex relaxations for global optimization of integrated process design and operation problems. Ind. Eng. Chem. Res. 51(21), 7287–7299 (2012)
Liu, X., Küçükyavuz, S., Luedtke, J.: Decomposition algorithm for two-stage chance constrained programs. In: Mathematical Programming Series B, pp. 1–25 (2014). doi:10.1007/s10107-014-0832-7
Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146(1–2), 219–244 (2014)
Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)
Marsten, R., Hogan, W., Blankenship, J.: The BOXSTEP method for large-scale optimization. Oper. Res. 23(3), 389–405 (1975)
Oliveira, F., Grossmann, I., Hamacher, S.: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain. Comput. Oper. Res. 49(1), 47–58 (2014)
Prékopa, A.: Dual method for a one-stage stochastic programming problem with random rhs obeying a discrete probabiltiy distribution. Z. Oper. Res. 34, 441–461 (1990)
Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp. 267–351. Elsevier, Amsterdam (2003)
Prékopa, A., Vízvári, B., Badics, T.: Programming under probabilistic constraints with discrete random variable. In:Giannessi, F., Komlósi, S., Rapcsák, T.(eds.) New Trends in Mathematical Programming : Hommage to Steven Vajda, Applied Optimization, vol. 13, pp. 235–255. Springer, New York (1998)
Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Math. Program. 93, 195–215 (2002)
Ruszczyński, A.: Decomposition methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp. 141–211. Elsevier, Amsterdam (2003)
Sahiridis, G.K.D., Minoux, M., Ierapetritou, M.G.: Accelerating benders method using covering cut bundle generation. Int. Trans. Oper. Res. 17, 221–237 (2010)
Santoso, T., Ahmed, S., Goetschalcks, M., Shapiro, A.: A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res. 167(1), 96–115 (2005)
Sen, S., Sherali, H.: Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming. Math. Program. 106, 203–223 (2006)
Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Modeling and Theory, MPS-SIAM series on optimization, vol. 9. SIAM and MPS, Philadelphia (2009)
Sherali, H., Lunday, B.J.: On generating maximal nondominated Benders cuts. Ann. Oper. Res. 210(1), 57–72 (2013)
Tahanan, M., van Ackooij, W., Frangioni, A., Lacalandra, F.: Large-scale unit commitment under uncertainty: a literature survey. 4OR 13(2), 115–171 (2015). doi:10.1007/s10288-014-0279-y
Tran-Dinh, Q., Necoara, I., Diehl, M.: Fast inexact decomposition algorithms for large-scale separable convex optimization. Optimization (to appear) 1–33 (2015). doi:10.1080/02331934.2015.1044898
van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles. Comput. Optim. Appl. 57(3), 555–597 (2014)
van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4), 1864–1889 (2014)
van Ackooij, W., Malick, J.: Decomposition algorithm for large-scale two-stage unit-commitment. Ann. Oper. Res. 238(1), 587–613 (2016). doi:10.1007/s10479-015-2029-8
van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24(2), 733–765 (2014)
van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15, 509–531 (2014)
van Slyke, R., Wets, R.B.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)
Wentges, P.: Accelerating benders’ decomposition for the capacitated facility location problem. Math. Methods Oper. Res. 44(2), 267–290 (1996)
Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim. Eng. 3, 253–280 (2002)
Wolf, C., Fábián, C.I., Koberstein, A., Stuhl, L.: Applying oracles of on-demand accuracy in two-stage stochastic programming a computational study. Eur. J. Oper. Res. 239(2), 437–448 (2014)
Yang, Y., Lee, J.M.: A tighter cut generation strategy for acceleration of benders decomposition. Comput. Chem. Eng. 44, 84–93 (2012)
Zakeri, G., Philpott, A., Ryan, D.M.: Inexact cuts in benders decomposition. SIAM J. Optim. 10(3), 643–657 (2000)
Zaourar, S., Malick, J.: Quadratic stabilization of benders decomposition pp. 1–22 (2014). Draft submitted; Privately communicated
Zappe, C.J., Cabot, A.V.: The application of generalized benders decomposition to certain nonconcave programs. Computers Math. Applic. 21(6/7), 181–190 (1991)
Acknowledgments
The authors gratefully acknowledge financial support from the Gaspard-Monge program for Optimization and Operations Research (PGMO) project “Consistent Dual Signals and Optimal Primal Solutions”. The first and second authors would also like to acknowledge networking support by the COST Action TD1207.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
van Ackooij, W., Frangioni, A. & de Oliveira, W. Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support. Comput Optim Appl 65, 637–669 (2016). https://doi.org/10.1007/s10589-016-9851-z
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-016-9851-z
Keywords
- Benders’ decomposition
- Chance-constrained problems
- Mixed-integer optimization
- Nonsmooth optimization
- Stabilization
- Inexact function computation