Abstract
High order tensor arises more and more often in signal processing, data analysis, higher-order statistics, as well as imaging sciences. In this paper, an adaptive gradient (AG) method is presented for generalized tensor eigenpairs. Global convergence and linear convergence rate are established under some suitable conditions. Numerical results are reported to illustrate the efficiency of the proposed method. Comparing with the GEAP method, an adaptive shifted power method proposed by Kolda and Mayo (SIAM J Matrix Anal Appl 35:1563–1581, 2014) the AG method is much faster and could reach the largest eigenpair with a higher probability.
Similar content being viewed by others
References
Bader, B.W., Kolda, T.G. et al.: MATLAB Tensor Toolbox Version 2.6, Available online, February 2015. http://www.sandia.gov/~tgkolda/TensorToolbox/
Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. Medical Image Computing and Computer-Assisted Intervention MICCAI, pp. 1–8. Springer, Berlin (2008)
Cetin, S., Unal, G.: A higher-order tensor vessel tractography for segmentation of vascular structures. IEEE Trans. Med. Imaging 34, 2172–2185 (2015)
Chang, K.C., Pearson, K.J., Zhang, T.: Perron–Frobenius Theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)
Chang, K.C., Pearson, K.J., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416–422 (2009)
Chang, K., Pearson, K., Zhang, T.: Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J. Matrix Anal. Appl. 32, 806–819 (2011)
Chang, K., Qi, L., Zhang, T.: A survey on the spectral theory of nonnegative tensors. Numer. Linear Algebra Appl. 20, 891–912 (2013)
Chang, K., Zhang, T.: On the uniqueness and nonuniqueness of the Z-eigenvector for transition probability tensors. J. Math. Anal. Appl. 408, 525–540 (2013)
Chen, Y., Dai, Y., Han, D., Sun, W.: Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming. SIAM J. Imaging Sci. 6, 1531–1552 (2013)
Chen Y., Qi L., Wang Q.: Computing eigenvalues of large scale Hankel tensors. J Sci Comput. doi:10.1007/s10915-015-0155-8
Chu M., Wu S.: On the second dominant eigenvalue affecting the Power method for transition probability tensors, Manuscript (2014)
Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)
Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 1073–1099 (2015)
Han, L.: An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numer. Algebr. Control Optim. 3, 583–599 (2013)
Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)
Hao, C., Cui, C., Dai, Y.: A feasible trust-region method for calculating extreme Z-eigenvalues of symmetric tensors. Pac. J. Optim. 11, 291–307 (2015)
Hillar, C., Lim, L.: Most tensor problems are NP-hard. J. ACM 45, 1–39 (2013)
Hu, S., Li, G., Qi, L., Song, Y.: Finding the maximum eigenvalue of essentially nonnegative symmetric tensors via sum of squares programming on the largest eigenvalue of a symmetric nonnegative tensor. J. Optim. Theory Appl. 158(3), 717–738 (2013)
Hu, S., Huang, Z., Qi, L.: Finding the extreme Z-eigenvalues of tensors via a sequential SDPs method. Numer. Linear Algebr. Appl. 20, 972–984 (2013)
Kofidis, E., Regalia, P.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)
Kolda, T.G., Mayo, J.R.: An adaptive shifted power methods for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35, 1563–1581 (2014)
Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)
De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2, RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
Li, G., Qi, L., Yu, G.: The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20, 1001–1029 (2013)
Li, G., Qi, L., Yu, G.: Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. Linear Algebra Appl. 438, 813–833 (2013)
Li, W., Ng, M.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62, 362–385 (2014)
Lim L.H.: Singular values and eigenvalues of tensors, a variational approach, proceedings of 1st IEEE international workshop on computational advances of multi-tensor adaptive processing, 129–132 (2005)
Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2010)
Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Autom. Control 53, 1096–1107 (2008)
Ni, Q., Qi, L.: A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. J. Glob. Optim. 61, 627–641 (2015)
Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)
Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)
Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the single-channel and multi-channel case. Numer. Linear Algebra Appl. 12, 809–826 (2005)
Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the decimative case. J. Chemom. 23, 341–351 (2009)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
Qi, L.: Eigenvalues and invariants of tensor. J. Math. Anal. Appl. 325, 1363–1377 (2007)
Qi, L., Han, D., Wu, E.X.: Principal invariants and inherent parameters of diffusion kurtosis tensors. J. Math. Anal. Appl. 349, 165–180 (2009)
Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009)
Qi, L., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math. 221, 150–157 (2008)
Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)
Qi, L., Yu, G., Xu, Y.: Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis. 45, 103–113 (2013)
Schultz, T., Seidel, H.-P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14, 1635–1642 (2008)
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 165(3), 854–873 (2015)
Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. doi:10.1007/s10957-016-0907-0
Sun, L., Ji, S., Ye, J.: Hypergraph spectral learning for multi-label classification. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp. 668–676 (2008)
Yang, L., Yang, Q., Zhao, X.: Quadratic third-order tensor optimization problem with quadratic constraints. Stat Optim Inf Comput 2, 130–146 (2014)
Yang, Q., Yang, Y.: Further results for Perron–Frobenius theorem for nonnegative tensors II. SIAM J. Matrix Anal. Appl. 32, 1236–1250 (2011)
Yang, Y., Yang, Q.: Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517–2530 (2010)
Xie, J., Chang, A.: H-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph. Front. Math. China 8, 107–127 (2013)
Zeng, M., Ni, Q.: Quasi-Newton method for computing Z-eigenpairs of a symmetric tensor. Pac. J. Optim. 11, 279–290 (2015)
Zhang, F., Zhou, B., Peng, L.: Gradient skewness tensors and local illumination detection for images. J. Comput. Appl. Math. 237, 663–671 (2013)
Zhang, L., Qi, L.: Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor. Numer. Linear Algebra Appl. 19, 830–841 (2012)
Zhang, L., Qi, L., Xu, Y.: Finding the largest eigenvalue of an irreducible nonnegative tensor and linear convergence for weakly positive tensors. J. Comput. Math. 30, 24–33 (2012)
Acknowledgments
This work was supported in part by the National Natural Science Foundation of China (Nos. 61262026, 61263011, 11571095, 11501100), NCET Programm of the Ministry of Education (NCET 13-0738), JGZX programm of Jiangxi Province (20112BCB23027), Natural Science Foundation of Jiangxi Province (20132BAB201026), science and technology programm of Jiangxi Education Committee (LDJH12088), Program for Innovative Research Team in University of Henan Province (14IRTSTHN023), the frontier and key technology innovation project of Guangdong Province (No. 2014B010118003, 2015B010106008).
Author information
Authors and Affiliations
Corresponding author
Additional information
Gaohang Yu, Zefeng Yu, Yi Xu, Yisheng Song, Yi Zhou have contributed equally to the paper.
Rights and permissions
About this article
Cite this article
Yu, G., Yu, Z., Xu, Y. et al. An adaptive gradient method for computing generalized tensor eigenpairs. Comput Optim Appl 65, 781–797 (2016). https://doi.org/10.1007/s10589-016-9846-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-016-9846-9