iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10589-015-9758-0
Dynamic generation of scenario trees | Computational Optimization and Applications Skip to main content
Log in

Dynamic generation of scenario trees

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper presents new algorithms for the dynamic generation of scenario trees for multistage stochastic optimization. The different methods described are based on random vectors, which are drawn from conditional distributions given the past and on sample trajectories. The structure of the tree is not determined beforehand, but dynamically adapted to meet a distance criterion, which measures the quality of the approximation. The criterion is built on transportation theory, which is extended to stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The disjoint union \(\biguplus _{i}V_{i}\) symbolizes that the sets are pairwise disjoint, \(V_{i}\cap V_{j}=\emptyset \), whenever \(i\ne j\).

  2. Generating random vectors can be accomplished by rejection sampling in \({\mathbb {R}}^{m}\), e.g., or by a standard procedure as addressed in the Appendix.

  3. The exponent \(s=3/4\) is a compromise between \(s\le 1\) to obtain \(\sum _{k=1}\frac{1}{k^{s}}=\infty \) and \(s>\frac{1}{2}\) for \(\sum _{k=1}\frac{1}{k^{2s}}<\infty \).

References

  1. Bally, V., Pagès, G., Printems, J.: A quantization tree method for pricing and hedging multidimensional american options. Math. Financ. 15(1), 119–168 (2005)

    Article  MATH  Google Scholar 

  2. Beiglböck, M., Goldstern, M., Maresch, G., Schachermayer, W.: Optimal and better transport plans. J. Funct. Anal. 256(6), 1907–1927 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. Comptes Rendus de l’Académie des Sci. Paris Sér. I Math 305(19), 805–808 (1987)

    MATH  MathSciNet  Google Scholar 

  4. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming. Math. Program. Ser. A 95(3), 493–511 (2003)

    Article  MATH  Google Scholar 

  6. Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, vol. 1730. Springer-Verlag, Berlin Heidelberg (2000)

  7. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. Stoch. Program. 24(2–3), 187–206 (2003)

    Article  MATH  Google Scholar 

  8. Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs. Oper. Res. Lett. 6, 731–738 (2007)

    Article  Google Scholar 

  9. Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs. Math. Program. Ser. A 118, 371–406 (2009)

    Article  MATH  Google Scholar 

  10. Heitsch, H., Römisch, W.: Scenario tree reduction for multistage stochastic programs. Comput. Manag. Sci. 2, 117–133 (2009)

    Article  Google Scholar 

  11. Heitsch, H., Römisch, W.: Stochastic Optimization Methods in Financ eand Energy. Scenario Tree Generation for Multistage Stochastic Programs, chapter 14, pp. 313–341. Springer Verlag, New York (2011)

  12. Hilli, P., Pennanen, T.: Numerical study of discretizations of multistage stochastic programs. Kybernetika 44(2), 185–204 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Høyland, K., Wallace, S.: Generating scenario trees for multistage decision problems. Manag. Sci. 47(2), 295–307 (2001)

    Article  Google Scholar 

  14. Kaut, M., Wallace, S.W.: Shape-based scenario generation using copulas. Comput. Manag. Sci. 8(1–2), 181–199 (2011)

    Article  MathSciNet  Google Scholar 

  15. Küchler, Ch.: On stability of multistage stochastic programs. SIAM J. Optim. 19(2), 952–968 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuhn, D.: Generalized Bounds for Convex Multistage Stochastic Programs. Lecture Notes in Economics and Mathematical Systems. Berlin, DE: Springer (2005)

  17. Kuhn, D.: Aggregation and discretization in multistage stochastic programming. Math. Program. 113(1), 61–94 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Statistics, vol. 1, pp. 281–29. University of California Press, Berkeley (1967)

  19. Mirkov, R., Pflug, G.Ch.: Tree approximations of dynamic stochastic programs. SIAM J. Optim. 18(3), 1082–1105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pagès, G.: A space quantization method for numerical integration. J. Comput. Appl. Math. 89(1), 1–38 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Math. Program. 116(1–2), 461–479 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pennanen, T., Koivu, M.: Epi-convergent discretizations of stochastic programs via integration quadratures. Numerische Mathematik 100, 141–163 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pflug, G.Ch.: Optimization of Stochastic Models. The Kluwer International Series in Engineering and Computer Science, vol. 373. Kluwer Academic Publishers, New York (1996)

  24. Pflug, G.Ch.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. 89, 251–271 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pflug, G.Ch.: Version-independence and nested distribution in multistage stochastic optimization. SIAM J. Optim. 20, 1406–1420 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pflug, G.Ch., Pichler, A.: A distance for multistage stochastic optimization models. SIAM J. Optim. 22(1), 1–23 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pflug, G.Ch., Pichler, A.: Multistage Stochastic Optimization. Springer, Springer Series in Operations Research and Financial Engineering, New York (2014)

  28. Rachev, S.T.: Probability metrics and the stability of stochastic models. Wiley, West Sussex (1991)

  29. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, volume 10, chapter 8. Elsevier, Amsterdam (2003)

    Google Scholar 

  30. Shapiro, A.: Inference of statistical bounds for multistage stochastic programming problems. Math. Methods Oper. Res. 58(1), 57–68 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shiryaev, A.N.: Probability. Springer, New York (1996)

    Book  Google Scholar 

  32. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

  33. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank two independent referees. Based on their careful reading and precise feedback we were able to improve the presentation and content significantly. Parts of this paper are addressed in our Springer book Multistage Stochastic Optimization [27], which summarizes many more topics in multistage stochastic optimization and which had to be completed before final acceptance of this paper. A. Pichler: The author gratefully acknowledges support of the Research Council of Norway (Grant 207690/E20)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Pichler.

Appendix: Conditional method for multivariate distributions

Appendix: Conditional method for multivariate distributions

To generate instances from a multivariate distribution (random vectors) with cdf \(F\left( z_{1},\ldots z_{m}\right) \) one may employ rejection sampling, or the ratio of uniforms method, or generate the vector component by component by proceeding as follows:

  1. (i)

    Generate \(Z_{1}\) from \(F_{1}\left( z\right) \), where \(F_{1}(z_{1})=F\left( z_{1},\infty ,\ldots \infty \right) \) is the first marginal. This can be accomplished by solving

    $$\begin{aligned} U_{1}=F_{1}(Z_{1}) \end{aligned}$$

    (the probability integral transform, where \(U_{1}\) is a uniformly distributed random variable) or by rejection sampling;

  2. (ii)

    Given the random vector up to dimension \(i-1\) one may generate \(Z_{i}\) conditionally on \(\left( Z_{1},\ldots Z_{i-1}\right) \) by solving

    $$\begin{aligned} U_{i}=F_{i}\left( z_{i}|\,Z_{1},\ldots Z_{i-1}\right) =\frac{F\left( Z_{1}\ldots ,Z_{i-1},x_{i},\infty ,\ldots \infty \right) }{F\left( Z_{1},\ldots Z_{i-1},\infty ,\ldots \infty \right) }, \end{aligned}$$

    where \(U_{i}\) is uniformly distributed, and independent from \(U_{1},\ldots U_{i-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pflug, G.C., Pichler, A. Dynamic generation of scenario trees. Comput Optim Appl 62, 641–668 (2015). https://doi.org/10.1007/s10589-015-9758-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9758-0

Keywords

Mathematics Subject Classification

Navigation