Abstract
By using the Moreau-Yosida regularization and proximal method, a new trust region algorithm is proposed for nonsmooth convex minimization. A cubic subproblem with adaptive parameter is solved at each iteration. The global convergence and Q-superlinear convergence are established under some suitable conditions. The overall iteration bound of the proposed algorithm is discussed. Preliminary numerical experience is reported.
Similar content being viewed by others
References
Birge, J.R., Qi, L., Wei, Z.: A general approach to convergence properties of some methods for nonsmooth convex optimization. Appl. Math. Optim. 38, 141–158 (1998)
Birge, J.R., Qi, L., Wei, Z.: Convergence analysis of some methods for minimizing a nonsmooth convex function. J. Optim. Appl. 97, 357–383 (1998)
Bonnans, J.F., Gilbert, J.Ch., Lemaréchal, C., Sagastizábal, C.A.: A family of variable metric proximal methods. Math. Program. 68, 15–47 (1995)
Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. (2009). doi:10.1007/s10107-009-0286-5
Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. (2010). doi:10.1007/s10107-009-0337-y
Clark, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62, 261–275 (1993)
Dennis, J.E. Jr, Li, S.B., Tapia, R.A.: A unified approach to global convergence of trust region methods for nonsmooth optimization. Math. Program. 68, 319–346 (1995)
Fukushima, M.: A descent algorithm for nonsmooth convex optimization. Math. Program. 30, 163–175 (1984)
Fukushima, M., Qi, L.: A global and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM J. Optim. 6, 1106–1120 (1996)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms ∏. Springer, Berlin (1993)
Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69, 89–109 (1995)
Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries. SIAM J. Optim. 7, 367–385 (1997)
Lukšan, L., Vlček, J.: Globally convergent variable metric method for convex nonsmooth unconstrained minimization. J. Optim. Theory Appl. 102, 593–613 (1999)
Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization, Technical report V-798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic (2000)
Meng, F., Zhao, G.: On second-order properties of the Moreau-Yosida regularization for constrained nonsmooth convex programs. Numer. Funct. Anal. Optim. 25, 515–529 (2004)
Meng, F., Sun, D., Zhao, G.: Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization. Math. Program. 104, 561–581 (2005)
Meng, F., Zhao, G., Goh, M., et al.: Lagrangian-dual functions and Moreau-Yosida regularization. SIAM J. Optim. 19, 39–61 (2008)
Nestero, Y.: Accelerating the cubic regularization of Newton’s methods on convex problems. Math. Program. 112, 159–181 (2008)
Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance. Math. Program. 108, 177–205 (2006)
Pang, J.S., Qi, L.: A global convergent Newton methods for convex SC 1 minimization problems. J. Optim. Theory Appl. 85, 633–648 (1995)
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
Qi, L., Sun, J.: A trust region algorithm for minimization of locally Lipschitzian functions. Math. Program. 66, 25–43 (1994)
Qi, L., Womersley, R.S.: An SQP algorithm for extended linear problems in stochastic programming. Ann. Oper. Res. 56, 251–285 (1995)
Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121–152 (1992)
Wei, Z., Qi, L.: Convergence analysis of a proximal Newton method. Numer. Funct. Anal. Optim. 17, 463–472 (1996)
Wei, Z., Qi, L., Birge, J.R.: A new methods for nonsmooth convex optimization. J. Inequal. Appl. 2, 157–179 (1998)
Zhang, L.: A new trust region algorithm for nonsmooth convex minimization. Appl. Math. Comput. 193, 135–142 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the Chinese NSF grants 10761001 and the Scientific Research Foundation of Guangxi University (Grant No. X081082).
Rights and permissions
About this article
Cite this article
Lu, S., Wei, Z. & Li, L. A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization. Comput Optim Appl 51, 551–573 (2012). https://doi.org/10.1007/s10589-010-9363-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-010-9363-1