Abstract
In recent years, many practical nonlinear optimal control problems have been solved by pseudospectral (PS) methods. In particular, the Legendre PS method offers a Covector Mapping Theorem that blurs the distinction between traditional direct and indirect methods for optimal control. In an effort to better understand the PS approach for solving control problems, we present consistency results for nonlinear optimal control problems with mixed state and control constraints. A set of sufficient conditions is proved under which a solution of the discretized optimal control problem converges to the continuous solution. Convergence of the primal variables does not necessarily imply the convergence of the duals. This leads to a clarification of the Covector Mapping Theorem in its relationship to the convergence properties of PS methods and its connections to constraint qualifications. Conditions for the convergence of the duals are described and illustrated. An application of the ideas to the optimal attitude control of NPSAT1, a highly nonlinear spacecraft, shows that the method performs well for real-world problems.
Similar content being viewed by others
References
Albassam, B.A.: Optimal near-minimum-time control design for flexible structures. J. Guid. Control Dyn. 25(4), 618–625 (2002)
Betts, J.T., Erb, S.O.: Optimal low thrust trajectories to the Moon. SIAM J. Appl. Dyn. Syst. 2(2), 144–170 (2003)
Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001)
Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001)
Bryson, A.E.: Dynamic Optimization. Addison-Wesley Longman, Reading (1999)
Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Hemisphere, New York (1975)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Method in Fluid Dynamics. Springer, New York (1988)
Chryssoverghi, I., Coletsos, J., Kokkinis, B.: Discretization methods for optimal control problems with state constraints. J. Comput. Appl. Math. 191, 1–31 (2006)
Dontchev, A.L.: Discrete approximations in optimal control. In: Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control. IMA Vol. Math. Appl., vol. 78, pp. 59–81. Springer, New York (1996). MR 97h:49043
Dontchev, A.L., Hager, W.W.: A new approach to Lipschitz continuity in state constrained optimal control. Syst. Control Lett. 35(3), 137–143 (1998)
Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comput. 70, 173–203 (2001)
Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge-Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal. 38(1), 202–226 (2000)
Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40, 1793–1796 (1995)
Elnagar, G., Kazemi, M.A.: Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11, 195–217 (1998)
Enright, P.G., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15(4), 994–1002 (1992)
Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. AIAA J. Guid. Control Dyn. 24(2), 270–277 (2001)
Fleming, A.: Real-time optimal slew maneuver design and control. Astronautical Engineer’s Thesis, US Naval Postgraduate School, December 2004
Freud, G.: Orthogonal polynomials. Pergamon Press, Elmsford (1971)
Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)
Gong, Q., Kang, W., Ross, I.M.: A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Autom. Control 51(7), 1115–1129 (2006)
Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)
Hager, W.W.: Numerical analysis in optimal control. In: Hoffmann, K.-H., Lasiecka, I., Leugering, G., Sprekels, J., Troeltzsch, F. (eds.) International Series of Numererical Mathematics, vol. 139, pp. 83–93. Birkhäuser, Basel (2001)
Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dyn. 10, 338–342 (1987)
Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995)
Hawkins, A.M., Fill, T.R., Proulx, R.J., Feron, E.M.: Constrained trajectory optimization for Lunar landing. In: AAS Spaceflight Mechanics Meeting, AAS 06-153, Tampa, FL, January 2006
Infeld, S.I., Murray, W.: Optimization of stationkeeping for a Libration point mission. In: AAS Spaceflight Mechanics Meeting, AAS 04-150, Maui, HI, February 2004
Josselyn, S., Ross, I.M.: A rapid verification method for the trajectory optimization of Reentry vehicles. J. Guid. Control Dyn. 26(3), 505–508 (2003)
Kang, W., Gong, Q., Ross, I.M.: Convergence of pseudospectral methods for nonlinear optimal control problems with discontinuous controller. In: 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’05), Seville, Spain, pp. 2799–2804 (2005)
Lu, P., Sun, H., Tsai, B.: Closed-loop endoatmospheric ascent guidance. J. Guid. Control Dyn. 26(2), 283–294 (2003)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) Series, vol. 330. Springer, Berlin (2005)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II: Applications. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) Series, vol. 331. Springer, Berlin (2005)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
Paris, S.W., Hargraves, C.R.: OTIS 3.0 Manual. Boeing Space and Defense Group, Seattle (1996)
Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23, 7–60 (1994)
Polak, E.: A historical survey of computational methods in optimal control. SIAM Rev. 15, 553–548 (1973)
Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, Heidelberg (1997)
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)
Rea, J.: Launch vehicle trajectory optimization using a Legendre pseudospectral method. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Paper No. AIAA 2003-5640, Austin, TX, August 2003
Riehl, J.P., Paris, S.W., Sjauw, W.K.: Comparision of implicit integration methods for solving aerospace trajectory optimization problems. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper No. 2006-6033, Keystone, CO, 21–24 August 2006
Ross, I.M.: A historical introduction to the covector mapping principle. In: AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 05-332, Tahoe, NV, 8–11 August 2005
Ross, I.M.: A roadmap for optimal control: The right way to commute. In: Annals of the New York Academy of Sciences, vol. 1065. New York, NY, January 2006
Ross, I.M.: User’s manual for DIDO: A MATLAB application package for solving optimal control problems. Elissar LLC., Technical Report TR-705 (2007)
Ross, I.M., Fahroo, F.: A pseudospectral transformation of the covectors of optimal control systems. In: Proceedings of the First IFAC Symposium on System Structure and Control, Prague, Czech Republic, 29–31 August 2001
Ross, I.M., D’Souza, C.N.: Hybrid optimal control framework for mission planning. J. Guid. Control Dyn. 28(4), 686–697 (2005)
Ross, I.M., Fahroo, F.: Discrete verification of necessary conditions for switched nonlinear optimal control systems. In: Proceedings of the American Control Conference, Boston, MA, June 2004
Ross, I.M., Fahroo, F.: Pseudospectral knotting methods for solving optimal control problems. AIAA J. Guid. Control Dyn. 27(3), 397–405 (2004)
Ross, I.M., Fahroo, F.: Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans. Autom. Control 49(8), 1410–1413 (2004)
Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. In: Kang, W. et al. (eds.) Lecture Notes in Control and Information Sciences, vol. 295, pp. 327–342. Springer, New York (2003)
Stanton, S., Proulx, R., D’Souza, C.N.: Optimal orbit transfer using a Legendre pseudospectral method. In: AAS/AIAA Astrodynamics Specialist Conference, AAS-03-574, Big Sky, MT, 3–7 August 2003
Strizzi, J., Ross, I.M., Fahroo, F.: Towards real-time computation of optimal controls for nonlinear systems. In: Proc. AIAA GNC Conf., Monterey, CA, August 2002
Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)
Veliov, V.M.: On the time-discretization of control systems. SIAM J. Control Optim. 35(5), 1470–1486 (1997)
Vinter, R.: Optimal Control,. Birkhäuser, Boston (2000)
von Stryk, O.: Numerical solution of optimal control problems by direct collocation. In: Bulirsch, R. et al. (eds.) Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods. Birkhäuser, Boston (1993)
Williams, P., Blanksby, C., Trivailo, P.: Receding horizon control of tether system using quasilinearization and Chebyshev pseudospectral approximations. In: AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 03-535, Big Sky, MT, 3–7 August 2003
Yan, H., Alfriend, K.T.: Three-axis magnetic attitude control using pseudospectral control law in eccentric orbits. In: AAS Spaceflight Mechanics Meeting, AAS 06-103, Tampa, FL, January 2006
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was supported in part by NPS, the Secretary of the Air Force, and AFOSR under grant number, F1ATA0-60-6-2G002.
Rights and permissions
About this article
Cite this article
Gong, Q., Ross, I.M., Kang, W. et al. Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput Optim Appl 41, 307–335 (2008). https://doi.org/10.1007/s10589-007-9102-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-007-9102-4