iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10589-007-9028-x
Nonmonotone derivative-free methods for nonlinear equations | Computational Optimization and Applications Skip to main content
Log in

Nonmonotone derivative-free methods for nonlinear equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we study nonmonotone globalization techniques, in connection with iterative derivative-free methods for solving a system of nonlinear equations in several variables. First we define and analyze a class of nonmonotone derivative-free linesearch techniques for unconstrained minimization of differentiable functions. Then we introduce a globalization scheme, which combines nonmonotone watchdog rules and nonmonotone linesearches, and we study the application of this scheme to some recent extensions of the Barzilai–Borwein gradient method and to hybrid stabilization algorithms employing linesearches along coordinate directions. Numerical results on a set of standard test problems show that the proposed techniques can be of value in the solution of large-dimensional systems of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barzilai, J., Borwein, J.M.: Two point step size gradient method. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brown, P.N.: A local convergence theory for combined inexact-Newton/finite difference methods. SIAM J. Numer. Anal. 4, 407–434 (1987)

    Article  Google Scholar 

  3. Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton–Krylov algorithms. SIAM J. Optim. 4, 297–330 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Pedersen, H.C.: The watchdog technique for forcing convergence in algorithms for constrained optimization. Math. Program. 16, 1–17 (1982)

    MATH  MathSciNet  Google Scholar 

  5. De Leone, R., Gaudioso, M., Grippo, L.: Stopping criteria for linesearch methods without derivatives. Math. Program. 30, 285–300 (1984)

    Article  MATH  Google Scholar 

  6. Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  7. Dirkse, S.P., Ferris, M.C.: The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123–156 (1995)

    Google Scholar 

  8. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 16–32 (1994)

    Article  MathSciNet  Google Scholar 

  9. Ferris, M.C., Lucidi, S.: Nonmonotone stabilization methods for nonlinear equations. J. Optim. Theory Appl. 81, 815–832 (1996)

    MathSciNet  Google Scholar 

  10. Fletcher, R.: On the Barzilai–Borwein method. Technical Report NA/207, Department of Mathematics, University of Dundee, Dundee, Scotland (2001)

  11. Gasparo, M.: A nonmonotone hybrid method for nonlinear systems. Optim. Methods Softw. 13, 79–84 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grippo, L., Lampariello, F., Lucidi, S.: Global convergence and stabilization of unconstrained minimization methods without derivatives. J. Optim. Theory Appl. 56, 385–406 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59, 779–805 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grippo, L., Lucidi, S., Sciandrone, M.: Nonmonotone derivative-free methods for unconstrained optimization. Presented at 1th international conference on optimization methods and software, Hangzhou, China, 15–18 December 2002

  16. Grippo, L., Sciandrone, M.: Nonmonotone globalization techniques for the Barzilai–Borwein gradient method. Comput. Optim. Appl. 23, 143–169 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  18. Kolda, T.G., Lewis, M.R., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. La Cruz, W., Martinez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18, 583–599 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13, 181–201 (2000)

    MATH  MathSciNet  Google Scholar 

  22. Lucidi, S., Sciandrone, M.: On the global convergence of derivative free methods for unconstrained optimization. SIAM J. Optim. 13, 97–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)

    MATH  Google Scholar 

  24. Pernice, M., Walker, H.F.: NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19, 302–318 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Raydan, M.: The Barzilai and Borwein gradient method for the large scale nconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. van de Rotten, B.A.: A limited memory Broyden method to solve high-dimensional systems of nonlinear equations. Ph.D. thesis, Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sciandrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grippo, L., Sciandrone, M. Nonmonotone derivative-free methods for nonlinear equations. Comput Optim Appl 37, 297–328 (2007). https://doi.org/10.1007/s10589-007-9028-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9028-x

Keywords

Navigation