iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10586-024-04403-9
A distributed load balancing method for IoT/Fog/Cloud environments with volatile resource support | Cluster Computing Skip to main content
Log in

A distributed load balancing method for IoT/Fog/Cloud environments with volatile resource support

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In cloud/fog-based environments, resource management is an important and challenging process. The deadline-based workflow scheduling mechanism is a common practice in such systems to overcome the complexities of resource management. However, many proposed approaches suffer from resource overloading/underloading, ignoring volunteer and volatile resources, and acting reactively. This paper presents a load-balancing method for IoT/Fog/Cloud environments integrated with local schedulers based on predicting workload and the presence of volatile mobile nodes (as dynamic resources). The proposed approach, firstly, turns the environment into a grid of equal-sized cells to reduce the system’s complexity. Then, the overall status of intra-cell resources (overloaded, underloaded, or normal) is estimated. This estimation is done according to the workload prediction and available dynamic resources. Finally, an exhaustive search is applied to dispatch extra workflows from an overloaded cell to an underloaded one in such a way as to avoid missing workflow deadlines and improve system performance. The proposed method is intended to be scalable and decentralized by nature, allowing it to be used in large-scale settings such as smart cities. Extensive software simulation is used to evaluate and compare the proposed method to with two recently published works. The simulation results show that the proposed method outperforms others regarding job completion rate, workload variances, and time-related parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

As mentioned in reference [52], the datasets generated during and/or analysed during the current study are available online with open-source access.

Abbreviations

LSC:

Local scheduling component

RAC:

Region analysis component

WDC:

Workflow dispatching component

SMC:

System management component

DPC:

Data preparation component

CCM:

Cellular coordinates map

MTC:

Model training component

LBP:

Load balancing plan

RMC:

Region management component

CMC:

Cell management component

DFC:

Data filtering component

BoW:

Bag of workflows

PPC:

Pre-processing component

TM:

Trained model

CLDC:

Cellular locations determination component

OA:

Observations agent

EDC:

Environment division component

FD:

Filtered data

LLBC:

Local load balancing component

PD:

Processed data

ESC:

Exhaustive search component

RD:

Raw data

RCM:

Region cost matrix

CSM:

Cell status message

RSAC:

Region status analysis component

OB:

Observations

References

  1. Coutinho, E.F., et al.: Elasticity in cloud computing: survey. Ann. Telecommun. 70(7–8), 289–309 (2015)

    Article  Google Scholar 

  2. Chen, M., et al.: On the computation offloading at ad hoc cloudlet: architecture and service modes. IEEE Commun. Mag. 53(6), 18–24 (2015)

    Article  Google Scholar 

  3. Hu, P., et al.: Survey on fog computing: architecture, key technologies, applications, and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)

    Article  Google Scholar 

  4. Badger, L., et al.: Cloud computing synopsis and recommendations, p. 800. NIST special publication (2012)

    Google Scholar 

  5. Islam, S., et al.: Empirical prediction models for adaptive resource provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162 (2012)

    Article  Google Scholar 

  6. Kumar, K.D., Umamaheswari, E.: Prediction methods for effective resource provisioning in cloud computing: a survey. Multiagent Grid Syst. 14(3), 283–305 (2018)

    Article  Google Scholar 

  7. Ningning, S., Chao, G., Xingshuo, A., Qiang, Z.: Fog computing dynamic load balancing mechanism based on graph repartitioning. China Commun. 13(3), 156–164 (2016)

    Article  Google Scholar 

  8. Puthal, D., Obaidat, M.S., Nanda, P., Prasad, M., Mohanty, S.P., Zomaya, A.Y.: Secure and sustainable load balancing of edge data centers in fog computing. IEEE Commun. Mag. 56(5), 60–65 (2018)

    Article  Google Scholar 

  9. Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X., Liu, A.X.: Dynamic resource allocation for load balancing in fog environment. Wirel. Commun. Mob. Comput. 2018, 1–15 (2018)

    Google Scholar 

  10. Zhao, T., Zhou, S., Song, L., Jiang, Z., Guo, X., Niu, Z.: Energy-optimal and delay-bounded computation offloading in mobile edge computing with heterogeneous clouds. China Commun. 17(5), 191–210 (2020)

    Article  Google Scholar 

  11. Moschakis, I.A., Karatza, H.D.: A meta-heuristic optimization approach to the scheduling of bag-of-tasks applications on heterogeneous clouds with multi-level arrivals and critical jobs. Simul. Model. Pract. Theory 57, 1–25 (2015)

    Article  Google Scholar 

  12. Yao, H., Bai, C., Xiong, M., Zeng, D., Fu, Z.: Heterogeneous cloudlet deployment and user-cloudlet association toward cost effective fog computing. Concurr. Comput: Pract. Exp. (2017). https://doi.org/10.1002/cpe.3975

    Article  Google Scholar 

  13. Mukherjee, M., Kumar, V., Kumar, S., Matamy, R., Mavromoustakis, C. X., Zhang, Q., Shojafar, M., Mastorakis, G.: Computation offloading strategy in heterogeneous fog computing with energy and delay constraints, In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–5. (2020)

  14. Thai, M.T., Lin, Y.D., Lai, Y.C., Chien, H.T.: Workload and capacity optimization for cloud-edge computing systems with vertical and horizontal offloading. IEEE Trans. Netw. Serv. Manag. 17(1), 227–238 (2019)

    Article  Google Scholar 

  15. Gu, Q., Wang, G., Liu, J., Fan, R., Fan, D., Zhong, Z.: Optimal offloading with non-orthogonal multiple access in mobile edge computing. In: 2018 IEEE Global Communications Conference, pp. 1–5. (2018)

  16. Tu, Y., Chen, H., Yan, L., Zhou, X.: Task offloading based on LSTM prediction and deep reinforcement learning for efficient edge computing in IoT. Future Internet 14(2), 30 (2022)

    Article  Google Scholar 

  17. Wu, Y., Shi, J., Ni, K., Qian, L., Zhu, W., Shi, Z., Meng, L.: Secrecy-based delay-aware computation offloading via mobile edge computing for internet of things. IEEE Internet Things J. 6(3), 4201–4213 (2018)

    Article  Google Scholar 

  18. Vu, T.T., Van Huynh, N., Hoang, D.T., Nguyen, D.N., Dutkiewicz, E.: Offloading energy efficiency with delay constraint for cooperative mobile edge computing networks. In: 2018 IEEE Global Communications Conference, pp. 1–6. (2018)

  19. Li, D., Chen, C., Guan, J., Zhang, Y., Zhu, J., Yu, R.: DCloud: deadline-aware resource allocation for cloud computing jobs. IEEE Trans. Parallel Distrib. Syst. 27(8), 2248–2260 (2015)

    Article  Google Scholar 

  20. Shu, C., Zhao, Z., Han, Y., Min, G., Duan, H.: Multi-user offloading for edge computing networks: a dependency-aware and latency-optimal approach. IEEE Internet Things J. 7(3), 1678–1689 (2019)

    Article  Google Scholar 

  21. Asghar, A., Abbas, A., Khattak, H.A., Khan, S.U.: Fog-based architecture and load balancing methodology for health monitoring systems. IEEE Access 9, 96189–96200 (2021)

    Article  Google Scholar 

  22. Beraldi, R., Canali, C., Lancellotti, R., Mattia, G.P.: Distributed load balancing for heterogeneous fog computing infrastructures in smart cities. Pervasive Mob. Comput. (2020). https://doi.org/10.1016/j.pmcj.2020.101221

    Article  Google Scholar 

  23. Hussein, M.K., Mousa, M.H.: Efficient task offloading for IoT-based applications in fog computing using ant colony optimization. IEEE Access 8, 37191–37201 (2020)

    Article  Google Scholar 

  24. Balaji, K., Kiran, P.S., Kumar, M.S.: An energy efficient load balancing on cloud computing using adaptive cat swarm optimization. Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2020.11.106

    Article  Google Scholar 

  25. Alqahtani, F., Amoon, M., Nasr, A.A.: Reliable scheduling and load balancing for requests in cloud-fog computing. Peer-to-Peer Netw. Appl. 14(4), 1905–1916 (2021)

    Article  Google Scholar 

  26. Adhikari, M., Nandy, S., Amgoth, T.: Meta heuristic-based task deployment mechanism for load balancing in IaaS cloud. J. Netw. Comput. Appl. 128, 64–77 (2019)

    Article  Google Scholar 

  27. Golchi, M.M., Saraeian, S., Heydari, M.: A hybrid of firefly and improved particle swarm optimization algorithms for load balancing in cloud environments: performance evaluation. Comput. Netw. (2019). https://doi.org/10.1016/j.comnet.2019.106860

    Article  Google Scholar 

  28. Talaat, F.M., Saraya, M.S., Saleh, A.I., Ali, H.A., Ali, S.H.: A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment. J. Ambient Intell. Human. Comput. 11, 4951–4966 (2020)

    Article  Google Scholar 

  29. Jiang, H., Song, M.: Multi-prediction based scheduling for hybrid workloads in the cloud data center. Clust. Comput. 21(3), 1607–1622 (2018)

    Article  Google Scholar 

  30. Gao, X., Huang, X., Bian, S., Shao, Z., Yang, Y.: PORA: predictive offloading and resource allocation in dynamic fog computing systems. IEEE Internet Things J. 7(1), 72–87 (2019)

    Article  Google Scholar 

  31. Tang, X., Liao, X., Zheng, J., Yang, X.: Energy efficient job scheduling with workload prediction on cloud data center. Clust. Comput. 21(3), 1581–1593 (2018)

    Article  Google Scholar 

  32. Shahidinejad, A., Ghobaei-Arani, M., Masdari, M.: Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Clust. Comput. 24(1), 319–342 (2021)

    Article  Google Scholar 

  33. Khorsand, R., Ghobaei-Arani, M., Ramezanpour, M.: A self-learning fuzzy approach for proactive resource provisioning in cloud environment. Softw.: Pract. Exp. 49(11), 1618–1642 (2019)

    Google Scholar 

  34. Javadpour, A., Sangaiah, A.K., Pinto, P., Jafari, F., Zhang, W., Abadi, A.M., Ahmadi, H.: An energy-optimized embedded load balancing using DVFS computing in cloud data centers. Comput. Commun. 197, 255–266 (2023)

    Article  Google Scholar 

  35. Neema, G., Kadan, A.B., Vijayan, V.P.: Multi-objective load balancing in cloud infrastructure through fuzzy based decision making and genetic algorithm based optimization. IAES Int. J. Artif. Intell. 12(2), 678 (2023)

    Google Scholar 

  36. Kruekaew, B., Kimpan, W.: Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning. IEEE Access 9(10), 17803–17818 (2022)

    Article  Google Scholar 

  37. Singh, S.P.: Effective load balancing strategy using fuzzy golden eagle optimization in fog computing environment. Sustain. Comput.: Inform. Syst. 1(35), 100766 (2022)

    Google Scholar 

  38. Thakur, A., Goraya, M.S.: RAFL: a hybrid metaheuristic based resource allocation framework for load balancing in cloud computing environment. Simul. Model. Pract. Theory 1(116), 102485 (2022)

    Article  Google Scholar 

  39. Kashyap, V., Ahuja, R., Kumar, A.: A hybrid approach for fault-tolerance aware load balancing in fog computing. Clust. Comput. 19, 1–7 (2024)

    Google Scholar 

  40. Nazeri, M., Soltanaghaei, M., Khorsand, R.: A predictive energy-aware scheduling strategy for scientific workflows in Fog computing. Expert Syst. Appl. 19, 123192 (2024)

    Article  Google Scholar 

  41. Mokni, M., Yassa, S., Hajlaoui, J.E., Omri, M.N., Chelouah, R.: Multi-objective fuzzy approach to scheduling and offloading workflow tasks in Fog-Cloud computing. Simul. Model. Pract. Theory 1(123), 102687 (2023)

    Article  Google Scholar 

  42. Ibrahim, M., Lee, Y., Kim, D.H.: DALBFog: deadline-aware and load-balanced task scheduling for the internet of things in Fog computing. IEEE Syst., Man, Cybern. Mag. 10(1), 62–71 (2024)

    Article  Google Scholar 

  43. Davami, F., Adabi, S., Rezaee, A., Rahmani, A.M.: Distributed scheduling method for multiple workflows with parallelism prediction and DAG prioritizing for time constrained cloud applications. Comput. Netw. (2021). https://doi.org/10.1016/j.comnet.2021.108560

    Article  Google Scholar 

  44. Akhound, N., Adabi, S., Rezaee, A., Rahmani, A.M.: Clustering of mobile IoT nodes with support for scheduling of time-sensitive applications in fog and cloud layers. Clust. Comput. (2022). https://doi.org/10.1007/s10586-022-03579-2

    Article  Google Scholar 

  45. Bai, Y., Xie, J., Wang, D., Zhang, W., Li, C.: A manufacturing quality prediction model based on AdaBoost-LSTM with rough knowledge. Comput. Ind. Eng. (2021). https://doi.org/10.1016/j.cie.2021.107227

    Article  Google Scholar 

  46. Fan, D., Sun, H., Yao, J., Zhang, K., Yan, X., Sun, Z.: Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy (2021). https://doi.org/10.1016/j.energy.2020.119708

    Article  Google Scholar 

  47. Ren, L., Dong, J., Wang, X., Meng, Z., Zhao, L., Deen, M.J.: A data-driven auto-cnn-lstm prediction model for lithium-ion battery remaining useful life. IEEE Trans. Ind. Inform. 17(5), 3478–3487 (2020)

    Article  Google Scholar 

  48. Zhang, Q., Gao, T., Liu, X., Zheng, Y.: public environment emotion prediction model using LSTM network. Sustainability (2020). https://doi.org/10.3390/su12041665

    Article  Google Scholar 

  49. Nezami, Z., et al.: Decentralized edge-to-cloud load balancing: service placement for the internet of things. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3074962

    Article  Google Scholar 

  50. Yusof, N.M., Rashid, R.S., Mohamed, Z.: Malaysia crude oil production estimation: an application of ARIMA model. In: 2010 International Conference on Science and Social Research (CSSR 2010), pp. 1255–1259. (2010)

  51. Sun, J., Ma, X., Kazi, M.: Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells. In: SPE Western Regional Meeting. OnePetro (2018)

  52. Alimohammadi, H., Rahmanifard, H., Chen, N.: Multivariate time series modelling approach for production forecasting in unconventional resources, InSPE Annual Technical Conference and Exhibition. OnePetro (2020)

  53. Van Steen, M., Tanenbaum, A.S.: Distributed systems. Leiden, The Netherlands: Maarten van Steen (2017)

  54. Velociraptor simulator: https://github.com/simulatie-oplossingen/Velociraptor

  55. Shafiq, D.A., et al.: A load balancing algorithm for the data centres to optimize cloud computing applications. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3065308

    Article  Google Scholar 

  56. https://www.opencompute.org

  57. https://www.cisco.com/c/dam/global/da_dk/assets/docs/presentations/vBootcamp_Performance_Benchmark.pdf

  58. Rezaee, A., Adabi, S., Shamsa, Z.: IoT nodes movement and job requests (Version 1), Zenodo. https://doi.org/10.5281/zenodo.6418236

  59. Gideon, J., et al.: Characterizing and profiling scientific workflows. Future Gener. Comput. Syst. (2013). https://doi.org/10.1016/j.future.2012.08.015

    Article  Google Scholar 

  60. Ian Goodfellow et al.: Deep Learing, MIT Press, (2016) ISBN: 978-0-262-03561-3

  61. Pietro Vertehi et al.: Unsupervised learning of an efficient short-term memory network. Proceedings of the 27th International Conference on Neural Information Processing Systems. (2014)

  62. Sao, W., et al.: Incorporating LSTM auto-encoders in optimizations to solve parking officer patrolling problem. ACM Trans. Spatial Algorithms Syst. (2020). https://doi.org/10.1145/3380966

    Article  Google Scholar 

  63. Huimei, H.A.N. et al.: Generalizing long short-term memory network for deep learning from generic data. ACM Transactions on Knowledge Discovery from Data (2020).

  64. Kingma, D.P. Adam, BAJ.: A method for stochastic optimization. arXiv preprint arXiv. (2014)

  65. Ding, R. et al.: A cost-effective time-constrained multi-workflow scheduling strategy in fog computing. In: International Conference on Service-Oriented Computing. (2018)

  66. Stavrinides, G.L., Karatza, H.D.: A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments. Multimed. Tools Appl. 78(17), 24639–24655 (2019)

    Article  Google Scholar 

  67. Ahmed, O.H., et al.: Scheduling of scientific workflows in multi-fog environments using markov models and a hybrid Salp swarm algorithm. IEEE Access 8, 189404–189422 (2020)

    Article  Google Scholar 

  68. Baradaran, A.A., et al.: HQCA-WSN High-quality clustering algorithm and optimal cluster head selection using fuzzy logic in wireless sensor networks. Fuzzy Sets Syst. (2020). https://doi.org/10.1016/j.fss.2019.11.015

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or.

Author information

Authors and Affiliations

Authors

Contributions

Zari Shamsa: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Visualization, Writing—original draft, Writing—review & editing. Ali Rezaee: Conceptualization, Investigation, Methodology, Project administration. Sahar Adabi: Supervision, Writing—original draft, Writing—review & editing, Validation, Data Curation. Amir Msoud Rahmani: Validation, Data Curation.

Corresponding author

Correspondence to Ali Rezaee.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsa, Z., Rezaee, A., Adabi, S. et al. A distributed load balancing method for IoT/Fog/Cloud environments with volatile resource support. Cluster Comput 27, 4281–4320 (2024). https://doi.org/10.1007/s10586-024-04403-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04403-9

Keywords

Navigation