iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10586-022-03710-3
ROGI: Partial Computation Offloading and Resource Allocation in the Fog-Based IoT Network Towards Optimizing Latency and Power Consumption | Cluster Computing Skip to main content
Log in

ROGI: Partial Computation Offloading and Resource Allocation in the Fog-Based IoT Network Towards Optimizing Latency and Power Consumption

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Fog computing has risen into a popular topic in recent years with the idea of deploying computation and communication closer to end-users. The capability of the fog model to face serious challenges like high latency and power consumption is of paramount research significance, notably in the context of the Internet of Things (IoT), given the volume and requirements of IoT applications. Accordingly, issues such as using the capacity of the fog layer maximally, minimizing latency while maintaining reliability, and efficiently distributing the workload across the network can be well explored. This motivated us to propose a scheme for partial computation offloading and resource allocation in the fog-based IoT network with the goal of optimizing latency and power consumption (ROGI). In this research, the nodes in all network layers are involved in processing the workload. Also, the power consumption in the end-users layer is reduced. Additionally, the fog nodes collaborate to improve system reliability and provide more resources for handling users’ requests. Furthermore, the concept of partial offloading is adopted, which would potentially lead to higher flexibility in resource management and provide the opportunity to leverage more resources in each layer of IoT architecture. Moreover, the whole model is decomposed into three problems, each of which is solved via optimization techniques. Extensive simulations are carried out to show the performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data

The data supporting the findings of this study are generated in our simulations, in which some variables are static and some follow probability distributions. We explained all the information needed to replicate the simulations in the section “Performance Evaluation.”

References

  1. Gu, L., Zeng, D., Guo, S., Barnawi, A., Xiang, Y.: Cost efficient resource management in fog computing supported medical cyber-physical system. IEEE Trans. Emerg. Top. Comput. 5, 108–119 (2017). https://doi.org/10.1109/TETC.2015.2508382

    Article  Google Scholar 

  2. Camhi, J.: Former Cisco CEO john chambers predicts 500 billion connected devices by 2025. Business Insider. https://www.businessinsider.com/former-cisco-ceo-500-billion-connected-devices-by-2025-2015-11 (2015). Accessed 17 Aug 2020

  3. Alippi, C., Fantacci, R., Marabissi, D., Roveri, M.: A cloud to the ground: the new frontier of intelligent and autonomous networks of things. IEEE Commun. Mag. 54, 14–20 (2016). https://doi.org/10.1109/MCOM.2016.1600541CM

    Article  Google Scholar 

  4. Mondal, S., Das, G., Wong, E.: Cost-optimal cloudlet placement frameworks over fiber-wireless access networks for low-latency applications. J. Netw. Comput. Appl. 138, 27–38 (2019). https://doi.org/10.1016/j.jnca.2019.04.014

    Article  Google Scholar 

  5. Mukherjee, M., Shu, L., Wang, D.: Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutorials. 20, 1826–1857 (2018). https://doi.org/10.1109/COMST.2018.2814571

    Article  Google Scholar 

  6. Keshavarznejad, M., Rezvani, M.H., Adabi, S.: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Cluster Comput. 24, 1825–1853 (2021). https://doi.org/10.1007/s10586-020-03230-y

    Article  Google Scholar 

  7. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3, 637–646 (2016). https://doi.org/10.1109/JIOT.2016.2579198

    Article  Google Scholar 

  8. Fan, Q., Ansari, N.: application aware workload allocation for edge computing-based IoT. IEEE Internet Things J. 5, 2146–2153 (2018). https://doi.org/10.1109/JIOT.2018.2826006

    Article  Google Scholar 

  9. Paul, D., Zhong, W.-D., Bose, S.K.: Energy efficiency aware load distribution and electricity cost volatility control for cloud service providers. J. Netw. Comput. Appl. 59, 185–197 (2016). https://doi.org/10.1016/j.jnca.2015.08.012

    Article  Google Scholar 

  10. Shao, Y., Li, C., Fu, Z., Jia, L., Luo, Y.: Cost-effective replication management and scheduling in edge computing. J. Netw. Comput. Appl. 129, 46–61 (2019). https://doi.org/10.1016/j.jnca.2019.01.001

    Article  Google Scholar 

  11. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4, 1125–1142 (2017). https://doi.org/10.1109/JIOT.2017.2683200

    Article  Google Scholar 

  12. Pan, J., McElhannon, J.: Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 5, 439–449 (2018). https://doi.org/10.1109/JIOT.2017.2767608

    Article  Google Scholar 

  13. Naha, R.K., Garg, S., Georgakopoulos, D., Jayaraman, P.P., Gao, L., Xiang, Y., Ranjan, R.: Fog computing: survey of trends, architectures, requirements, and research directions. IEEE Access. 6, 47980–48009 (2018). https://doi.org/10.1109/ACCESS.2018.2866491

    Article  Google Scholar 

  14. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials. 20, 416–464 (2018). https://doi.org/10.1109/COMST.2017.2771153

    Article  Google Scholar 

  15. Shukla, S., Hassan, M.F., Tran, D.C., Akbar, R., Paputungan, I.V., Khan, M.K.: Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR). Cluster Comput. (2021). https://doi.org/10.1007/s10586-021-03279-3

    Article  Google Scholar 

  16. Shahryari, O.-K., Pedram, H., Khajehvand, V., TakhtFooladi, M.D.: Energy-efficient and delay-guaranteed computation offloading for fog-based IoT networks. Comput. Netw. 182, 107511 (2020). https://doi.org/10.1016/j.comnet.2020.107511

    Article  Google Scholar 

  17. Fersi, G.: Fog computing and Internet of Things in one building block: a survey and an overview of interacting technologies. Cluster Comput. 24, 2757–2787 (2021). https://doi.org/10.1007/s10586-021-03286-4

    Article  Google Scholar 

  18. Xiao, Y., Krunz, M.: Distributed optimization for energy-efficient fog computing in the tactile internet. IEEE J. Sel. Areas Commun. 36, 2390–2400 (2018). https://doi.org/10.1109/JSAC.2018.2872287

    Article  Google Scholar 

  19. Baranwal, G., Vidyarthi, D.P.: FONS: a fog orchestrator node selection model to improve application placement in fog computing. J. Supercomput. 77, 10562–10589 (2021). https://doi.org/10.1007/s11227-021-03702-x

    Article  Google Scholar 

  20. Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.: Multiobjective optimization for computation offloading in fog computing. IEEE Internet Things J. 5, 283–294 (2018). https://doi.org/10.1109/JIOT.2017.2780236

    Article  Google Scholar 

  21. Liu, L., Chang, Z., Guo, X.: Socially aware dynamic computation offloading scheme for fog computing system with energy harvesting devices. IEEE Internet Things J. 5, 1869–1879 (2018). https://doi.org/10.1109/JIOT.2018.2816682

    Article  Google Scholar 

  22. Lee, G., Saad, W., Bennis, M.: An online optimization framework for distributed fog network formation with minimal latency. IEEE Trans. Wirel. Commun. 18, 2244–2258 (2019). https://doi.org/10.1109/TWC.2019.2901850

    Article  Google Scholar 

  23. Xiao, Y., Krunz, M.: QoE and power efficiency tradeoff for fog computing networks with fog node cooperation. In: Proceedings of the IEEE INFOCOM (2017). https://doi.org/10.1109/INFOCOM.2017.8057196

  24. Bozorgchenani, A., Member, S., Tarchi, D., Member, S., Corazza, G.E., Member, S.: Centralized and distributed architectures for energy and delay efficient fog network based edge computing services. IEEE Trans. Green Commun. Netw. (2018). https://doi.org/10.1109/TGCN.2018.2885443

    Article  Google Scholar 

  25. Ning, Z., Dong, P., Kong, X., Xia, F.: A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things. IEEE Internet Things J. 6, 4804–4814 (2019). https://doi.org/10.1109/JIOT.2018.2868616

    Article  Google Scholar 

  26. Bi, J., Yuan, H., Zhang, K., Zhou, M.: Energy-minimized partial computation offloading for delay-sensitive applications in heterogeneous edge networks. IEEE Trans. Emerg. Top. Comput. 6750, 1–13 (2022). https://doi.org/10.1109/TETC.2021.3137980

    Article  Google Scholar 

  27. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutorials 19, 2322–2358 (2017). https://doi.org/10.1109/COMST.2017.2745201

    Article  Google Scholar 

  28. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 182, 107496 (2020). https://doi.org/10.1016/j.comnet.2020.107496

    Article  Google Scholar 

  29. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the context of internet of things. IEEE Trans. Cloud Comput. 6, 46–59 (2018). https://doi.org/10.1109/TCC.2015.2485206

    Article  Google Scholar 

  30. Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3, 1171–1181 (2016). https://doi.org/10.1109/JIOT.2016.2565516

    Article  Google Scholar 

  31. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining Stackelberg game and matching. IEEE Internet Things J. 4, 1204–1215 (2017). https://doi.org/10.1109/JIOT.2017.2688925

    Article  Google Scholar 

  32. Wang, K., Wang, Y., Sun, Y., Guo, S., Wu, J.: Green industrial internet of things architecture: an energy-efficient perspective. IEEE Commun. Mag. 54, 48–54 (2016). https://doi.org/10.1109/MCOM.2016.1600399CM

    Article  Google Scholar 

  33. Yang, Y., Zhao, S., Zhang, W., Chen, Y., Luo, X., Wang, J.: DEBTS: delay energy balanced task scheduling in homogeneous fog networks. IEEE Internet Things J. 5, 2094–2106 (2018). https://doi.org/10.1109/JIOT.2018.2823000

    Article  Google Scholar 

  34. Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J.: Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 64, 4268–4282 (2016). https://doi.org/10.1109/TCOMM.2016.2599530

    Article  Google Scholar 

  35. Yang, S., Li, F., Shen, M., Chen, X., Fu, X., Wang, Y.: Cloudlet placement and task allocation in mobile edge computing. IEEE Internet Things J. 6, 5853–5863 (2019). https://doi.org/10.1109/JIOT.2019.2907605

    Article  Google Scholar 

  36. Xiao, Y., Krunz, M.: Dynamic network slicing for scalable fog computing systems with energy harvesting. IEEE J. Sel. Areas Commun. 36, 2640–2654 (2018). https://doi.org/10.1109/JSAC.2018.2871292

    Article  Google Scholar 

  37. Wang, C., Liang, C., Yu, F.R., Chen, Q., Tang, L.: Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16, 4924–4938 (2017). https://doi.org/10.1109/TWC.2017.2703901

    Article  Google Scholar 

  38. Yao, J., Ansari, N.: QoS-aware fog resource provisioning and mobile device power control in IoT networks. IEEE Trans. Netw. Serv. Manag. 16, 167–175 (2019). https://doi.org/10.1109/TNSM.2018.2888481

    Article  Google Scholar 

  39. Kleinrock, L.: Queueing Systems. 2: Computer Applications. Wiley, New York (1976)

    MATH  Google Scholar 

  40. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  41. Oommen, B.J., Roberts, T.D.: Continuous learning automata solutions to the capacity assignment problem. IEEE Trans. Comput. 49, 608–620 (2000). https://doi.org/10.1109/12.862220

    Article  Google Scholar 

  42. Sykas, E.D.: On the capacity assignment problem in packet-switching computer networks. Appl. Math. Model. 10, 346–356 (1986). https://doi.org/10.1016/0307-904X(86)90094-6

    Article  MATH  Google Scholar 

  43. Kaur, M., Aron, R.: A systematic study of load balancing approaches in the fog computing environment. J. Supercomput. 77, 9202–9247 (2021). https://doi.org/10.1007/s11227-020-03600-8

    Article  Google Scholar 

  44. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  45. Löfberg, J.: Modeling and solving uncertain optimization problems in YALMIP. IFAC Proc. 41, 1337–1341 (2008). https://doi.org/10.3182/20080706-5-KR-1001.00229

    Article  Google Scholar 

  46. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx (2013)

  47. Fan, Q., Ansari, N.: Workload allocation in hierarchical cloudlet networks. IEEE Commun. Lett. 22, 820–823 (2018). https://doi.org/10.1109/LCOMM.2018.2801866

    Article  Google Scholar 

  48. Zhang, J., Hu, X., Ning, Z., Ngai, E.C.H., Zhou, L., Wei, J., Cheng, J., Hu, B.: Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet Things J. 5, 2633–2645 (2018). https://doi.org/10.1109/JIOT.2017.2786343

    Article  Google Scholar 

  49. Lu, S., Wu, J., Duan, Y., Wang, N., Fang, Z.: Cost-efficient resource provisioning in delay-sensitive cooperative fog computing. In: Proceedings of the International Conference Parallel Distributed Systems—ICPADS. 2018-December, pp. 706–713 (2019). https://doi.org/10.1109/PADSW.2018.8644626

  50. Mao, Y., Zhang, J., Song, S.H., Letaief, K.B.: Power-delay tradeoff in multi-user mobile-edge computing systems. In: 2016 IEEE Global Communications Conference GLOBECOM 2016—Proceedings (2016). https://doi.org/10.1109/GLOCOM.2016.7842160

  51. Dinh, T.Q., Tang, J., La, Q.D., Quek, T.Q.S.: Offloading in mobile edge computing: task allocation and computational frequency scaling. IEEE Trans. Commun. 65, 3571–3584 (2017). https://doi.org/10.1109/TCOMM.2017.2699660

    Article  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Ali Rezaee.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Ethical statement

This article does not contain any studies involving human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabarsi, B.T., Rezaee, A. & Movaghar, A. ROGI: Partial Computation Offloading and Resource Allocation in the Fog-Based IoT Network Towards Optimizing Latency and Power Consumption. Cluster Comput 26, 1767–1784 (2023). https://doi.org/10.1007/s10586-022-03710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03710-3

Keywords

Navigation