iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10584-008-9448-3
West Antarctic Ice Sheet collapse – the fall and rise of a paradigm | Climatic Change Skip to main content

Advertisement

Log in

West Antarctic Ice Sheet collapse – the fall and rise of a paradigm

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

It is now almost 30 years since John Mercer (1978) first presented the idea that climate change could eventually cause a rapid deglaciation, or “collapse,” of a large part of the West Antarctic ice sheet (WAIS), raising world sea levels by 5 m and causing untold economic and social impacts. This idea, apparently simple and scientifically plausible, created a vision of the future, sufficiently alarming that it became a paradigm for a generation of researchers and provided an icon for the green movement. Through the 1990s, however, a lack of observational evidence for ongoing retreat in WAIS and improved understanding of the complex dynamics of ice streams meant that estimates of likelihood of collapse seemed to be diminishing. In the last few years, however, satellite studies over the relatively inaccessible Amundsen Sea sector of West Antarctica have shown clear evidence of ice sheet retreat showing all the features that might have been predicted for emergent collapse. These studies are re-invigorating the paradigm, albeit in a modified form, and debate about the future stability of WAIS. Since much of WAIS appears to be unchanging, it may, no longer be reasonable to suggest there is an imminent threat of a 5-m rise in sea level resulting from complete collapse of the West Antarctic ice sheet, but there is strong evidence that the Amundsen Sea embayment is changing rapidly. This area alone, contains the potential to raise sea level by around ~1.5 m, but more importantly it seems likely that it could, alter rapidly enough, to make a significant addition to the rate of sea-level rise over coming two centuries. Furthermore, a plausible connection between contemporary climate change and the fate of the ice sheet appears to be developing. The return of the paradigm presents a dilemma for policy-makers, and establishes a renewed set of priorities for the glaciological community. In particular, we must establish whether the hypothesized instability in WAIS is real, or simply an oversimplification resulting from inadequate understanding of the feedbacks that allow ice sheets to achieve equilibrium: and whether there is any likelihood that contemporary climate change could initiate collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460

    Article  Google Scholar 

  • Anandakrishnan S, Alley RB, Jacobel R, Conway H (2001) The flow regime of Ice Stream C and hypotheses concerning its recent stagnation. In: Alley RB, Bindschadler RA (eds) The West Antarctic Ice sheet: behavior and environment. Antarctic Research Series, 77. AGU, Washington, DC, pp 283–296

    Google Scholar 

  • Bentley CR (1964) The structure of Antarctica and its ice cover. In: Odishaw H (eds) Research in geophysics, solid earth and interface phenomena, vol 2. MIT, Cambridge, MA, pp 335–389

    Google Scholar 

  • Bindschadler RA (2002) History of lower Pine Island Glacier, West Antarctica, from Landsat imagery. J Glaciol 48:536–544

    Article  Google Scholar 

  • Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in sea level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van den Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: the scientific basis. CUP, Cambridge, pp 583–638

    Google Scholar 

  • Clark PU, Mitrovica JX, Milne GA, Tamisiea ME (2002) Sea-level fingerprinting as a direct test for the source of global meltwater pulse 1A. Science 295:2438–2441

    Google Scholar 

  • Conway H, Hall BL, Denton GH, Gades AM, Waddington ED (1999) Past and future grounding-line retreat of the West Antarctic ice sheet. Science 286:280–283

    Article  Google Scholar 

  • Davis CH, Yonghong L, McConnell JR, Frey MM, Hanna E (2005) Snowfall-driven growth in Antarctic Ice Sheet mitigates recent sea-level rise. Science 308:1898–1901

    Article  Google Scholar 

  • De Angelis H, Skvarca P (2003) Glacier surge after ice shelf collapse. Science 299:1560–1562

    Article  Google Scholar 

  • Doake CSM, Corr HFJ, Rott H, Skvarca P, Young NW (1998) Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 391:778–780

    Article  Google Scholar 

  • Doake CSM, Corr HFJ, Jenkins A, Makinson K, Nicholls KW, Nath C, Smith AM, Vaughan DG (2001) Rutford Ice Stream, Antarctica. In: Alley RB, Bindschadler RA (eds) The West Antarctic Ice sheet: behavior and environment. Antarctic Research Series, 77. AGU, Washington, DC, pp 221–235

    Google Scholar 

  • Dupont TK, Alley RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys Res Lett 32:L04503. doi:10.1029/2004GL022024

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates in the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Hellmer HH, Jacobs SS, Jenkins A (1998) Ocean erosion of a floating Antarctic Glacier in the Amundsen Sea. Ant Res Series 75:83–100

    Google Scholar 

  • Hindmarsh RCA (1996) Stability of ice rises and uncoupled marine ice sheets. Ann Glaciol 23: 105–115

    Google Scholar 

  • Hindmarsh RCA (2006) A rheological–climatological threshold for the existence of steady marine ice-sheet grounding line positions. Geophys Res Lett 8:10464

    Google Scholar 

  • Hindmarsh RCA, Le Meur E (2001) Dynamical processes involved in the retreat of marine ice-sheets. J Glaciol 47:271–282

    Article  Google Scholar 

  • Holt JW, Blankenship DD, Morse DL, Young DA, Peters ME, Kempf SD, Richter TG, Vaughan DG, Corr HFJ (2006) New boundary conditions for the West Antarctic ice sheet: subglacial topography beneath Thwaites and Smith glaciers. Geophys Res Lett 33:L09502

    Article  Google Scholar 

  • Hughes TJ (1981) The weak underbelly of the West Antarctic Ice Sheet. J Glaciol 27:518–525

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds): Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, USA

    Google Scholar 

  • Jacobs SS, Hellmer HH, Jenkins A (1996a) Antarctic ice sheet melting in the Southeast Pacific. Geophys Res Lett 23:957–960

    Article  Google Scholar 

  • Jacobs SS, Jenkins A, Hellmer HH (1996b) On the mass balance of West Antarctica’s Pine Island Glacier. Special report 96-27. Cold Regions Research and Engineering Laboratory, Hanover, NH, pp 52–56

  • Jenkins A, Vaughan DG, Jacobs SS, Hellmer HH, Keys JR (1997) Glaciological and oceanographic evidence of high melt rates beneath Pine Island Glacier, West Antarctica. J Glaciol 43: 114–121

    Google Scholar 

  • Joughin I, Tulaczyk S (2002) Positive mass balance of the Ross Ice Streams, West Antarctica. Science 295:476–480

    Article  Google Scholar 

  • Joughin I, Rignot E, Rosanova CE, Lucchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophys Res Lett 30:1706

    Article  Google Scholar 

  • Lythe M, Vaughan DG, BEDMAP Consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res 106:11335–11352

    Article  Google Scholar 

  • MacAyeal DR (1993) Binge/purge oscillations of the laurentide ice-sheet as a cause of the North-Atlantics Heinrich Events. Paleoceanography 8:775–784

    Article  Google Scholar 

  • MacAyeal DR, Scambos TA, Hulbe CL, Fahnestock MA (2003) Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J Glaciol 49:22–36

    Article  Google Scholar 

  • Mercer JH (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271:321–325

    Article  Google Scholar 

  • Morris EM, Vaughan DG (2003) Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. In: Domack E, Leventer A, Burnett A, Bindschadler R, Convey P, Kirby M (eds) Antarctic peninsula climate variability: historical and paleoenvironmental perspectives. Antarctic Research Series, 79. Antarctic Research Series, 79. AGU, Washington, DC, pp 61–68

    Google Scholar 

  • Nicholls RJ, Lowe JA (2004) Benefits of mitigation of climate change for coastal areas. Glob Environ Change 14:229–244

    Article  Google Scholar 

  • Nicholls RJ, Lowe JA (2006) Climate stabilisation and impacts of sea-level rise. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, pp 195–202

    Google Scholar 

  • Paterson WSB (1994) The physics of glaciers. Elsevier, Oxford, pp 1–480

    Google Scholar 

  • Payne AJ, Vieli A, Shepherd A, Wingham DJ, Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys Res Lett 31:L23401. doi:10.1029/204GL021284

    Article  Google Scholar 

  • Rabus BT, Lang O (2003) Interannual surface velocity variations of Pine Island Glacier, West Antarctica. Ann Glaciol 36:205–214

    Article  Google Scholar 

  • Rapley C (2006) The Antarctic ice sheet and sea level rise. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, pp 25–27

    Google Scholar 

  • Rignot EJ (1998) Fast recession of a West Antarctic Glacier. Science 281:549–551

    Article  Google Scholar 

  • Rignot E (2002) Ice-shelf changes in Pine Island Bay, Antarctica, 1947–2000. J Glaciol 48:247–256

    Article  Google Scholar 

  • Rignot E (2008) Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys Res Lett 35:L12505. doi:10.1029/2008GL033365

  • Rignot EJ, Vaughan DG, Schmeltz M, Dupont T, MacAyeal DR (2002) Acceleration of Pine Island and Thwaites Glacier, West Antarctica. Ann Glaciol 34:189–194

    Article  Google Scholar 

  • Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004a) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020679

    Google Scholar 

  • Rignot E, Thomas RH, Kanagaratnam P, Casassa G, Frederick E, Gogineni P, Krabill W, Rivera A, Russell R, Sonntag J, Swift R, Yungel J (2004b) Improved estimate of the mass balance of glaciers draining into the Amundsen Sea of West Antarctica from CECS/NASA 2002 campaign. Ann Glaciol 39:231–237

    Article  Google Scholar 

  • Rignot E, Casassa G, Gogineni S, Kanagaratnam P, Krabill W, Pritchard H, Rivera A, Thomas R, Vaughan D (2005) Recent ice loss from the Fleming and other glaciers,Wordie Bay, West Antarctic Peninsula. Geophys Res Lett 32:L07502. doi:10.1029/2004GL021947

    Article  Google Scholar 

  • Rott H, Rack W, Skvarca P, de Angelis H (2002) Northern Larsen Ice Shelf, Antarctica: further retreat after collapse. Ann Glaciol 34:277–282

    Article  Google Scholar 

  • Scambos TA, Hulbe C, Fahnestock M, Bohlander J (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J Glaciol 46:516–530

    Article  Google Scholar 

  • Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18402

    Article  Google Scholar 

  • Scherer RP, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B (1998) Pleistocene collapse of the West Antarctic Ice Sheet. Science 281:82–85

    Article  Google Scholar 

  • Schmeltz M, Rignot E, Dupont TK, MacAyeal DR (2002) Sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions: a model study. J Glaciol 48:552–558

    Article  Google Scholar 

  • Schoof C (2007a) Ice sheet grounding line dynamics: steady states, stability and hysteresis. J Geophys Res 112(F03S28). doi:10.1029/2006JF000664

  • Schoof C (2007b) Marine ice sheet dynamics. Part I. The case of rapid sliding. J Fluid Mech 573:27–55

    Google Scholar 

  • Shepherd A, Wingham DJ, Mansley JAD, Corr HFJ (2001) Inland thinning of Pine Island Glacier. Science 291:862–864

    Article  Google Scholar 

  • Shepherd A, Wingham DJ, Mansley JAD (2002) Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys Res Lett 29:1364. doi:10.1029/2001GL014183

    Article  Google Scholar 

  • Shepherd A, Wingham D, Payne T, Skvarca P (2003) Larsen ice shelf has progressively thinned. Science 302:856–859

    Article  Google Scholar 

  • Shepherd A, Wingham DJ, Rignot E (2004) Warm ocean is eroding West Antarctic Ice Sheet. Geophys Res Lett 31:L23402. doi:10.1029/2004GL021106

    Article  Google Scholar 

  • Stone JO, Balco GA, Sugden DE, Caffee MW, Sass LC III, Cowdery SG, Siddoway C (2003) Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299:99–102

    Article  Google Scholar 

  • The EPICA Community (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  • Thomas RH (2004) Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbr ae, Greenland. J Glaciol 50:57–66

    Article  Google Scholar 

  • Thomas RH, Bentley CR (1978) A model for Holocene retreat of the West Antarctic Ice Sheet. Quat Res 10:150–170

    Article  Google Scholar 

  • Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258

    Article  Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Vaughan DG (2006) Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance. Arct Antarct Alp Res 38:147–152

    Article  Google Scholar 

  • Vaughan DG, Doake CSM (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379:328–331

    Article  Google Scholar 

  • Vaughan DG, Spouge JR (2002) Risk estimation of collapse of the West Antarctic ice sheet. Clim Change 52:65–91

    Article  Google Scholar 

  • Vaughan DG, Corr HFJ, Ferraccioli F, Frearson N, O’Hare A, Mach D, Holt JW, Blankenship DD, Morse D, Young DA (2006) New boundary conditions for the West Antarctic ice sheet: subglacial topography beneath Pine Island Glacier. Geophys Res Lett 33:L09501

    Article  Google Scholar 

  • Vaughan DG, Mantripp DR, Sievers J, Doake CSM (1993) A synthesis of remote sensing data on Wilkins Ice Shelf, Antarctica. Ann Glaciol 17:211–218

    Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson CL, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Vieli A, Payne AJ (2005) Assessing the ability of numerical ice sheet models to simulate grounding line migration. J Geophys Res 110:F01003. doi:10.1029/2004JF000202

    Article  Google Scholar 

  • Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J Glaciol 13:3–11

    Google Scholar 

  • Wingham DJ, Ridout AJ, Scharroo R, Arthern RJ, Schum CK (1998) Antarctic elevation change from 1992 to 1996. Science 282:456–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Vaughan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, D.G. West Antarctic Ice Sheet collapse – the fall and rise of a paradigm. Climatic Change 91, 65–79 (2008). https://doi.org/10.1007/s10584-008-9448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-008-9448-3

Keywords

Navigation