ABSTRACT
This study used genome-wide linkage analysis to detect Quantitative Trait Loci (QTLs) implicated in variation in general academic achievement as measured by the Queensland Core Skills Test (QCST) (Queensland Studies Authority, 2004). Data from 210 families were analysed. While no empirically derived significant or suggestive peaks for general academic achievement were indicated a peak on chromosome 2 was observed in a region where Posthuma et al. (2005) reported significant linkage for Performance IQ (PIQ) and suggestive linkage for Full Scale IQ (FSIQ), and Luciano et al. (this issue) observed significant linkage for PIQ and word reading. A peak on chromosome 18 was also observed approximately 20 cM removed from a region recently implicated in reading achievement. In addition, on chromosomes 2 and 18 peaks for a number of specific academic skills, two of which were suggestive, coincided with the general academic achievement peaks. The findings suggest that variation in general academic achievement is influenced by genes on chromosome 2 which have broad influence on a variety of cognitive abilities.
Similar content being viewed by others
REFERENCES
Abecasis, G. R. (2004). http://www.sph.umich.edu/csg/abecasis/Merlin/reference.html
Abecasis G. R., Cherney S. S., Cookson W. O., Cardon L. R. (2002). Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30: 97-101
Baade L. E. and Schoenberg M. R. (2004). A proposed method to estimate premorbid intelligence utilizing group achievement measures from school records. Arch. Clin. Neuropsychol. 19: 227-243
Bartels M., Rietveld M. J. H, Van Baal G. C. M and Boomsma D. I. (2002). Heritability of educational achievement in 12-year-olds and the overlap with cognitive ability. Twin Res. 5: 544–553
Bond J., Roberts E., Mochida G. H., Hampshire D. J., Scott S., Askham J. M., Springell K., Mahadeven M., Crow Y. J., Markham A. F., Walsh C. A. and Woods G. G. (2002). ASPM is a major determinant of cerebral cortical size. Nat. Genet. 32: 316-320
Cardon L. R. and Bell J. I. (2001). Association study designs for complex diseases. Nat. Rev. Genet. 2: 91–99
Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., and DeFries J. C. (1994). Quantitative trait locus for reading disability on chromosome 6. Science 266: 276-279
Carey G. (1992). Inferences about genetic correlations. Behav. Genet. 18: 329-338
Ceci S. J. (1994). Education, achievement, and general intelligence: What ever happened to the psycho in psychometrics? Psychol. Inq. 5: 197–201
Deffenbacher K. E., Kenyon J. B., Hoover D. M., Olson R. K., Pennington B. F., DeFries J. C., Smith S. D. (2004). Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Hum. Genet. 115: 128–138
Fisher S. E., Francks C., Marlow A. J., MacPhie I. L., Newbury D. F., Cardon L. R., Ishikawa-Brush Y., Richardson A. J., Talcott J. B., Gayán J., Olson R. K., Pennington B. F., Smith S. D., DeFries J. C., Stein J. F., Monaco A. P. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nat. Genet. 30: 86–91
Fisher P. J., Turic D., Williams N. M., McGuffin P., Asherson P., Ball D., Craig I., Eley T., Hill L., Chorney K., Chorney M. J., Benbow C. P., Lubinski D., Plomin R., and Owen M. J. (1999). DNA pooling identifies QTLs on chromosome 4 for general cognitive ability in children. Hum. Mol. Genet. 8: 915-922
Gayán J., Smith S. D., Cherny S. S., Cardon L. R., Fulker D. W., Brower A. M., Olson R. K., Pennington B. F., DeFries J. C. (1999). Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am. J. Hum. Genet. 64: 157-64
Grigorenko E. L., Wood F. B., Meyer M. S., Hart L. A., Speed W. C., Shuster B. S., Pauls D. L. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. Am. J. Hum. Genet. 60: 27–39
Hallmayer J. F., Jablensky A., Michie P., Woodbury M., Salmon B., Combrinck J., Wichmann H., Rock D., D’Ercole M., Howell S., Dragović M., and Kent A. (2003). Linkage analysis of candidate regions using a composite neurocognitive phenotype correlated with schizophrenia. Mol. Psychiatr. 8: 511-523
Haseman J. K., Elston R. C. (1972). The investigation of linkage between a quantitative trait and marker locus. Behav. Genet. 2: 3–19
Jackson D. N. (1984). Multidimensional Aptitude Battery: Manual. Research Psychologist Press, London
Jensen A. R. (1998). The g Factor: The Science of Mental Ability. Praeger, London
Kaplan D. E., Gayán J., Ahn J., Won T. -W., Pauls D., Olson R. K., DeFries J. C., Wood F., Pennington B. F., Page G. P., Smith S. D., Gruen J. R. (2002). Evidence for linkage and association with reading disability, on 6p21.3–22. Am. J. Hum. Genet. 70: 1287–1298
Kong A., Gudbjartsson D. F., Sainz J., Jonsdottir G. M., Gudjonsson S. A., Richardsson B., Sigurdardottir S., Barnard J., Hallbeck B., Masson G., Shlien A., Palsson S. T., Frigge M. L., Thorgeirsson T. E., Gulcher J. R., Stefansson K. (2002). A high-resolution recombination map of the human genome. Nat. Genet. 31: 241-247
Lander E., Kruglyak L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11:241–247
Leal S. M. (2003). Genetic maps of microsatellite and single-nucleotide polymorphism markers: Are the distances accurate? Genet. Epidemiol. 24: 243–252
Ledbetter S. A., Kuwano A., Dobyns W. B., Ledbetter D. H. (1992). Microdeletions of chromosome 17p13 as a cause of isolated lissencephaly. Am. J. Hum. Genet. 50: 182–189
Legare M. E., Bartlett F. S. II and Frankel, W. N. (2000). A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10: 42–48
Luciano, M., Wright, M. J., Duffy, D. L., Wainwright, M. A., Zhu, G., Evans, D. M., Geffen, G. M., Montgomery, G. W., and Martin, N. G. Genome-wide scan of IQ finds significant linkage to a Quantitative Trait Locus on 2q. Behav. Genet. this issue)
Murphy K.R., Davidshofer C.O. (1994). Psychological Testing: Principles and Applications (3rd Ed). Prentice Hall, Upper Saddle River, N.J.
Nelson H. E. (1982). National Adult Reading Test. NFER-Nelson Publishing Company, Berkshire
Petrill S.A., Wilkerson B. (2000). Intelligence and achievement: A behavioral genetic perspective. Educ. Psychol. Rev. 12: 185–199
Plomin R. (2003). General cognitive ability. In: Plomin R., DeFries J. C., Craig I. W., McGuffin P. (eds) Behavioral genetics in the postgenomic era. American Psychological Association, Washington DC, pp. 183–201
Plomin R., Hill L., Craig I. W., McGuffin P., Purcell S., Sham P., Lubinski D., Thompson L., Fisher P. J., Turic D., Owen M. J. (2001). A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: A five-stage design using DNA pooling and extreme selected groups. Behav. Genet. 31: 497–509
Plomin R., Turic D. M., Hill L., Turic D. E., Stephens M., Williams J., Owens M. J., O’Donovan M. (2004). A functional polymorphism in the succinate-semialdehyde dehydrogenase (aldehyde dehydrogenase 5 family, member A1) gene is associated with cognitive ability. Mol. Psychiatr. 9: 582–586
Posthuma D., Luciano M., de Geus E. J. C., Wright M. J., Slagboom P. E., Montgomery G. W., Boomsma D. I., Martin N. G. (2005). A genome-wide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am. J. Hum. Genet. 77: 318–326
Queensland Studies Authority. (2003). http://www.qsa.qld.edu.au publications /te/sep/sep_report_2003.pdf.
Queensland Studies Authority (2004). The 2004 Queensland Core Skills Test Retrospective. Queensland Studies Authority, Brisbane
Queensland Studies Authority. (2005). http://www.qsa.qld.edu.au/
Rujescu D., Hartmann A. M., Gonnermann C., Moller H. J., Giegling I. (2003). M129V variation in the prion protein may influence cognitive performance. Mol. Psychiatr. 8: 937–941
Schonell F. J., Schonell P. E. (1960). Diagnostic and Attainment Testing. Oliver and Boyd, Edinburgh
Sham P. C., Purcell S., Cherny S., Abecasis G. (2002). Powerful Regression-based quantitative-trait linkage analysis of general pedigrees. Am. J. Hum. Genet. 71: 238-253
Smith S. D., Pennington B. F., Kimberling W. J. (1991). Screening for multiple genes influencing dyslexia. Read Writ: Interdisciplinary J. 3: 285–298
Thorndike R. L. (1984). Intelligence as Information Processing: The Mind and the Computer. Center on Evaluation, Development, and Research, Bloomington, IN
Tsai S. J., Hong C. J., Yu Y. W., Chen T. J. (2004). Association study of a brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and personality trait and intelligence in healthy young females. Neuropsychobiology 49: 13–16
van Wezel T., Ruivenkamp C. A., Stassen A. P., Moen C. J., and Demant P. (1999). Four new colon cancer susceptibility loci, Scc6 to Scc9 in the mouse. Cancer Res. 59: 4216–4218
Vink J. M., Boomsma D. I. (2002). Gene finding strategies. Biol. Psychol. 61: 53–71
Wainwright M., Wright M. J., Geffen G. M., Geffen L. B., Luciano M. and Martin N. G. (2004). Genetic and environmental sources of covariance between reading tests used in neuropsychological assessment and IQ subtests. Behav. Genet. 34: 365-376
Wainwright M. A., Wright M. J., Geffen G. M., Luciano M., Martin N. G. (2005a). The genetic basis of academic achievement on the Queensland Core Skills Test and its shared genetic variance with IQ. Behav. Genet. 35: 133-145
Wainwright, M. A., Wright, M. J., Luciano, M., Geffen, G. M., & Martin, N. G. (2005b). Multivariate analysis of academic skills defined by the Queensland Core Skills Test and IQ highlight the importance of genetic g. Twin Res. Hum. Genet. 8: 602–608
Wright M., De Geus E., Ando J., Luciano M., Posthuma D., Ono Y., Hansell N., Van Baal C., Hiraishi K., Hasegawa T., Smith G., Geffen G., Geffen L., Kanba S., Miyake A., Martin M., Boomsma D. (2001). Genetics of cognition: outline of a collaborative twin study. Twin Res. 4: 48–56
Wright M. J., Martin N. G. (2004). Brisbane adolescent twin study: Outline of study methods and research projects. Aust. J. Psychol. 56: 65-78
Yalcin B., Willis-Owen S. A., Fullerton J., Meesaq A., Deacon R. M., Rawlins J. N., Copley R. R., Morris A. P., Flint J., Mott R. (2004). Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat. Genet. 36: 1197–1202
Young T. L., Atwood L. D., Ronan S. M., Dewan A. T., Alvear A. B., Peterson J., Holleschau A., King R. A. (2001). Further refinement of the MYP2 locus for autosomal dominant high myopia by linkage disequilibrium analysis. Ophthalmic Genet. 22: 69-75
Zhu G., Evans D. M., Duffy D. L., Montgomery G. W., Medland S. E., Gillespie N. A., Ewe K. R., Jewell M., Liew Y. W., Hayward N. K., Sturm R. A., Trent J. M., Martin N. G. (2004). A genome scan for eye colour in 502 twin families: Most variation is due to a QTL on chromosome 15q. Twin Res. 7: 197–210
ACKNOWLEDGEMENTS
We greatly appreciate the support from the twins and their parents and their willingness to participate in this study. We are grateful to Marlene Grace, Ann Eldridge and Kathleen Moore for recruitment of twin pairs and phenotypic data collection, and Anjali Henders, Megan Campbell and staff of the Molecular Epidemiology Laboratory for blood processing and DNA extraction. We also thank the QSA (formerly QSSSSB) for permission to use their data and their ongoing assistance with data retrieval. Phenotypic collection was supported by grants from the Australian Research Council (Grant Numbers: A79600334, A79906588, A79801419, DP0212016, DP0343921), and genotyping by the Australian NHMRC’s Program in Medical Genomics (NHMRC-219178) and the Center for Inherited Disease Research (CIDR; Director, Dr. Jerry Roberts) at the Johns Hopkins University. CIDR is fully funded through a federal contract from the National Institutes of Health to the Johns Hopkins University (Contract Number N01- HG-65403).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wainwright, M.A., Wright, M.J., Luciano, M. et al. A Linkage Study of Academic Skills Defined by the Queensland Core Skills Test. Behav Genet 36, 56–64 (2006). https://doi.org/10.1007/s10519-005-9013-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10519-005-9013-z