iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10519-005-9013-z
A Linkage Study of Academic Skills Defined by the Queensland Core Skills Test | Behavior Genetics Skip to main content

Advertisement

Log in

A Linkage Study of Academic Skills Defined by the Queensland Core Skills Test

  • Published:
Behavior Genetics Aims and scope Submit manuscript

ABSTRACT

This study used genome-wide linkage analysis to detect Quantitative Trait Loci (QTLs) implicated in variation in general academic achievement as measured by the Queensland Core Skills Test (QCST) (Queensland Studies Authority, 2004). Data from 210 families were analysed. While no empirically derived significant or suggestive peaks for general academic achievement were indicated a peak on chromosome 2 was observed in a region where Posthuma et al. (2005) reported significant linkage for Performance IQ (PIQ) and suggestive linkage for Full Scale IQ (FSIQ), and Luciano et al. (this issue) observed significant linkage for PIQ and word reading. A peak on chromosome 18 was also observed approximately 20 cM removed from a region recently implicated in reading achievement. In addition, on chromosomes 2 and 18 peaks for a number of specific academic skills, two of which were suggestive, coincided with the general academic achievement peaks. The findings suggest that variation in general academic achievement is influenced by genes on chromosome 2 which have broad influence on a variety of cognitive abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  • Abecasis, G. R. (2004). http://www.sph.umich.edu/csg/abecasis/Merlin/reference.html

  • Abecasis G. R., Cherney S. S., Cookson W. O., Cardon L. R. (2002). Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30: 97-101

    Article  PubMed  CAS  Google Scholar 

  • Baade L. E. and Schoenberg M. R. (2004). A proposed method to estimate premorbid intelligence utilizing group achievement measures from school records. Arch. Clin. Neuropsychol. 19: 227-243

    Article  PubMed  Google Scholar 

  • Bartels M., Rietveld M. J. H, Van Baal G. C. M and Boomsma D. I. (2002). Heritability of educational achievement in 12-year-olds and the overlap with cognitive ability. Twin Res. 5: 544–553

    Article  PubMed  Google Scholar 

  • Bond J., Roberts E., Mochida G. H., Hampshire D. J., Scott S., Askham J. M., Springell K., Mahadeven M., Crow Y. J., Markham A. F., Walsh C. A. and Woods G. G. (2002). ASPM is a major determinant of cerebral cortical size. Nat. Genet. 32: 316-320

    Article  PubMed  CAS  Google Scholar 

  • Cardon L. R. and Bell J. I. (2001). Association study designs for complex diseases. Nat. Rev. Genet. 2: 91–99

    Article  PubMed  CAS  Google Scholar 

  • Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., and DeFries J. C. (1994). Quantitative trait locus for reading disability on chromosome 6. Science 266: 276-279

    Article  PubMed  CAS  Google Scholar 

  • Carey G. (1992). Inferences about genetic correlations. Behav. Genet. 18: 329-338

    Article  Google Scholar 

  • Ceci S. J. (1994). Education, achievement, and general intelligence: What ever happened to the psycho in psychometrics? Psychol. Inq. 5: 197–201

    Article  Google Scholar 

  • Deffenbacher K. E., Kenyon J. B., Hoover D. M., Olson R. K., Pennington B. F., DeFries J. C., Smith S. D. (2004). Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Hum. Genet. 115: 128–138

    Article  PubMed  CAS  Google Scholar 

  • Fisher S. E., Francks C., Marlow A. J., MacPhie I. L., Newbury D. F., Cardon L. R., Ishikawa-Brush Y., Richardson A. J., Talcott J. B., Gayán J., Olson R. K., Pennington B. F., Smith S. D., DeFries J. C., Stein J. F., Monaco A. P. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nat. Genet. 30: 86–91

    Article  PubMed  CAS  Google Scholar 

  • Fisher P. J., Turic D., Williams N. M., McGuffin P., Asherson P., Ball D., Craig I., Eley T., Hill L., Chorney K., Chorney M. J., Benbow C. P., Lubinski D., Plomin R., and Owen M. J. (1999). DNA pooling identifies QTLs on chromosome 4 for general cognitive ability in children. Hum. Mol. Genet. 8: 915-922

    Article  PubMed  CAS  Google Scholar 

  • Gayán J., Smith S. D., Cherny S. S., Cardon L. R., Fulker D. W., Brower A. M., Olson R. K., Pennington B. F., DeFries J. C. (1999). Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am. J. Hum. Genet. 64: 157-64

    Article  PubMed  Google Scholar 

  • Grigorenko E. L., Wood F. B., Meyer M. S., Hart L. A., Speed W. C., Shuster B. S., Pauls D. L. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. Am. J. Hum. Genet. 60: 27–39

    PubMed  CAS  Google Scholar 

  • Hallmayer J. F., Jablensky A., Michie P., Woodbury M., Salmon B., Combrinck J., Wichmann H., Rock D., D’Ercole M., Howell S., Dragović M., and Kent A. (2003). Linkage analysis of candidate regions using a composite neurocognitive phenotype correlated with schizophrenia. Mol. Psychiatr. 8: 511-523

    Article  CAS  Google Scholar 

  • Haseman J. K., Elston R. C. (1972). The investigation of linkage between a quantitative trait and marker locus. Behav. Genet. 2: 3–19

    Article  PubMed  CAS  Google Scholar 

  • Jackson D. N. (1984). Multidimensional Aptitude Battery: Manual. Research Psychologist Press, London

    Google Scholar 

  • Jensen A. R. (1998). The g Factor: The Science of Mental Ability. Praeger, London

    Google Scholar 

  • Kaplan D. E., Gayán J., Ahn J., Won T. -W., Pauls D., Olson R. K., DeFries J. C., Wood F., Pennington B. F., Page G. P., Smith S. D., Gruen J. R. (2002). Evidence for linkage and association with reading disability, on 6p21.3–22. Am. J. Hum. Genet. 70: 1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Kong A., Gudbjartsson D. F., Sainz J., Jonsdottir G. M., Gudjonsson S. A., Richardsson B., Sigurdardottir S., Barnard J., Hallbeck B., Masson G., Shlien A., Palsson S. T., Frigge M. L., Thorgeirsson T. E., Gulcher J. R., Stefansson K. (2002). A high-resolution recombination map of the human genome. Nat. Genet. 31: 241-247

    PubMed  CAS  Google Scholar 

  • Lander E., Kruglyak L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Leal S. M. (2003). Genetic maps of microsatellite and single-nucleotide polymorphism markers: Are the distances accurate? Genet. Epidemiol. 24: 243–252

    Article  PubMed  Google Scholar 

  • Ledbetter S. A., Kuwano A., Dobyns W. B., Ledbetter D. H. (1992). Microdeletions of chromosome 17p13 as a cause of isolated lissencephaly. Am. J. Hum. Genet. 50: 182–189

    PubMed  CAS  Google Scholar 

  • Legare M. E., Bartlett F. S. II and Frankel, W. N. (2000). A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10: 42–48

    PubMed  CAS  Google Scholar 

  • Luciano, M., Wright, M. J., Duffy, D. L., Wainwright, M. A., Zhu, G., Evans, D. M., Geffen, G. M., Montgomery, G. W., and Martin, N. G. Genome-wide scan of IQ finds significant linkage to a Quantitative Trait Locus on 2q. Behav. Genet. this issue)

  • Murphy K.R., Davidshofer C.O. (1994). Psychological Testing: Principles and Applications (3rd Ed). Prentice Hall, Upper Saddle River, N.J.

    Google Scholar 

  • Nelson H. E. (1982). National Adult Reading Test. NFER-Nelson Publishing Company, Berkshire

    Google Scholar 

  • Petrill S.A., Wilkerson B. (2000). Intelligence and achievement: A behavioral genetic perspective. Educ. Psychol. Rev. 12: 185–199

    Article  Google Scholar 

  • Plomin R. (2003). General cognitive ability. In: Plomin R., DeFries J. C., Craig I. W., McGuffin P. (eds) Behavioral genetics in the postgenomic era. American Psychological Association, Washington DC, pp. 183–201

    Chapter  Google Scholar 

  • Plomin R., Hill L., Craig I. W., McGuffin P., Purcell S., Sham P., Lubinski D., Thompson L., Fisher P. J., Turic D., Owen M. J. (2001). A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: A five-stage design using DNA pooling and extreme selected groups. Behav. Genet. 31: 497–509

    Article  PubMed  CAS  Google Scholar 

  • Plomin R., Turic D. M., Hill L., Turic D. E., Stephens M., Williams J., Owens M. J., O’Donovan M. (2004). A functional polymorphism in the succinate-semialdehyde dehydrogenase (aldehyde dehydrogenase 5 family, member A1) gene is associated with cognitive ability. Mol. Psychiatr. 9: 582–586

    Article  CAS  Google Scholar 

  • Posthuma D., Luciano M., de Geus E. J. C., Wright M. J., Slagboom P. E., Montgomery G. W., Boomsma D. I., Martin N. G. (2005). A genome-wide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am. J. Hum. Genet. 77: 318–326

    Article  PubMed  CAS  Google Scholar 

  • Queensland Studies Authority. (2003). http://www.qsa.qld.edu.au publications /te/sep/sep_report_2003.pdf.

  • Queensland Studies Authority (2004). The 2004 Queensland Core Skills Test Retrospective. Queensland Studies Authority, Brisbane

    Google Scholar 

  • Queensland Studies Authority. (2005). http://www.qsa.qld.edu.au/

  • Rujescu D., Hartmann A. M., Gonnermann C., Moller H. J., Giegling I. (2003). M129V variation in the prion protein may influence cognitive performance. Mol. Psychiatr. 8: 937–941

    Article  CAS  Google Scholar 

  • Schonell F. J., Schonell P. E. (1960). Diagnostic and Attainment Testing. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Sham P. C., Purcell S., Cherny S., Abecasis G. (2002). Powerful Regression-based quantitative-trait linkage analysis of general pedigrees. Am. J. Hum. Genet. 71: 238-253

    Article  PubMed  CAS  Google Scholar 

  • Smith S. D., Pennington B. F., Kimberling W. J. (1991). Screening for multiple genes influencing dyslexia. Read Writ: Interdisciplinary J. 3: 285–298

    Article  Google Scholar 

  • Thorndike R. L. (1984). Intelligence as Information Processing: The Mind and the Computer. Center on Evaluation, Development, and Research, Bloomington, IN

    Google Scholar 

  • Tsai S. J., Hong C. J., Yu Y. W., Chen T. J. (2004). Association study of a brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and personality trait and intelligence in healthy young females. Neuropsychobiology 49: 13–16

    Article  PubMed  CAS  Google Scholar 

  • van Wezel T., Ruivenkamp C. A., Stassen A. P., Moen C. J., and Demant P. (1999). Four new colon cancer susceptibility loci, Scc6 to Scc9 in the mouse. Cancer Res. 59: 4216–4218

    PubMed  Google Scholar 

  • Vink J. M., Boomsma D. I. (2002). Gene finding strategies. Biol. Psychol. 61: 53–71

    Article  PubMed  Google Scholar 

  • Wainwright M., Wright M. J., Geffen G. M., Geffen L. B., Luciano M. and Martin N. G. (2004). Genetic and environmental sources of covariance between reading tests used in neuropsychological assessment and IQ subtests. Behav. Genet. 34: 365-376

    Article  PubMed  Google Scholar 

  • Wainwright M. A., Wright M. J., Geffen G. M., Luciano M., Martin N. G. (2005a). The genetic basis of academic achievement on the Queensland Core Skills Test and its shared genetic variance with IQ. Behav. Genet. 35: 133-145

    Article  Google Scholar 

  • Wainwright, M. A., Wright, M. J., Luciano, M., Geffen, G. M., & Martin, N. G. (2005b). Multivariate analysis of academic skills defined by the Queensland Core Skills Test and IQ highlight the importance of genetic g. Twin Res. Hum. Genet. 8: 602–608

    Article  Google Scholar 

  • Wright M., De Geus E., Ando J., Luciano M., Posthuma D., Ono Y., Hansell N., Van Baal C., Hiraishi K., Hasegawa T., Smith G., Geffen G., Geffen L., Kanba S., Miyake A., Martin M., Boomsma D. (2001). Genetics of cognition: outline of a collaborative twin study. Twin Res. 4: 48–56

    Article  PubMed  CAS  Google Scholar 

  • Wright M. J., Martin N. G. (2004). Brisbane adolescent twin study: Outline of study methods and research projects. Aust. J. Psychol. 56: 65-78

    Article  Google Scholar 

  • Yalcin B., Willis-Owen S. A., Fullerton J., Meesaq A., Deacon R. M., Rawlins J. N., Copley R. R., Morris A. P., Flint J., Mott R. (2004). Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat. Genet. 36: 1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Young T. L., Atwood L. D., Ronan S. M., Dewan A. T., Alvear A. B., Peterson J., Holleschau A., King R. A. (2001). Further refinement of the MYP2 locus for autosomal dominant high myopia by linkage disequilibrium analysis. Ophthalmic Genet. 22: 69-75

    Article  PubMed  CAS  Google Scholar 

  • Zhu G., Evans D. M., Duffy D. L., Montgomery G. W., Medland S. E., Gillespie N. A., Ewe K. R., Jewell M., Liew Y. W., Hayward N. K., Sturm R. A., Trent J. M., Martin N. G. (2004). A genome scan for eye colour in 502 twin families: Most variation is due to a QTL on chromosome 15q. Twin Res. 7: 197–210

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We greatly appreciate the support from the twins and their parents and their willingness to participate in this study. We are grateful to Marlene Grace, Ann Eldridge and Kathleen Moore for recruitment of twin pairs and phenotypic data collection, and Anjali Henders, Megan Campbell and staff of the Molecular Epidemiology Laboratory for blood processing and DNA extraction. We also thank the QSA (formerly QSSSSB) for permission to use their data and their ongoing assistance with data retrieval. Phenotypic collection was supported by grants from the Australian Research Council (Grant Numbers: A79600334, A79906588, A79801419, DP0212016, DP0343921), and genotyping by the Australian NHMRC’s Program in Medical Genomics (NHMRC-219178) and the Center for Inherited Disease Research (CIDR; Director, Dr. Jerry Roberts) at the Johns Hopkins University. CIDR is fully funded through a federal contract from the National Institutes of Health to the Johns Hopkins University (Contract Number N01- HG-65403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Wainwright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wainwright, M.A., Wright, M.J., Luciano, M. et al. A Linkage Study of Academic Skills Defined by the Queensland Core Skills Test. Behav Genet 36, 56–64 (2006). https://doi.org/10.1007/s10519-005-9013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9013-z

KEY WORDS:

Navigation