iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10489-021-03048-0
Improvement and application of hybrid real-coded genetic algorithm | Applied Intelligence Skip to main content

Advertisement

Log in

Improvement and application of hybrid real-coded genetic algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

When solving constrained optimization problems (COPs) with high-dimension and multi-extreme problems, genetic algorithm (GA) has the issue of trapping into local optimum. Therefore, this paper proposes a hybrid real-coded genetic algorithm (HIRCGA). First, a sorting group selection (SGS) is given, which is a simple operation and easy to implement. Second, a combinational crossover (CX) operator is developed. It consists of a heuristic normal distribution and direction crossover based on the optimal individual (HNDDX-BOI) and a sine cosine crossover (SCX), which enhances the exploration ability of the algorithm. Third, an operation of eliminating the similarity of different variables in the same dimension (ES) is added, which significantly avoids premature convergence and maintains the population diversity. Fourth, a combinational mutation (CM) operator is proposed, where the global and local search abilities of HIRCGA are fully considered. Fifth, the chaotic search (CS) based on Tent map is introduced to enhance the search power of HIRCGA. Moreover, 28 benchmark test functions in CEC 2017 and two complex real-world optimization problems are selected to demonstrate the effectiveness and superiority of HIRCGA. The computational results and statistical analysis indicate that HIRCGA can improve the solution accuracy compared with other algorithms. The effectiveness of HIRCGA is verified in theory and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Michigan

    Google Scholar 

  2. Price K, Sa R (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  3. Esmat R, Hossein N-P, Saeid S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  4. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  5. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69(3):46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  7. Wang GG (2016) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comp 10:151–164. https://doi.org/10.1007/s12293-016-0212-3

    Article  Google Scholar 

  8. Agrawal RB, Deb K, Agrawal RB (1994) Simulated binary crossover for continuous search space. Complex Syst 9(3):115–148

    MathSciNet  MATH  Google Scholar 

  9. Jin C, Li F, Tsang ECC, Bulysheva L, Kataev MY (2017) A new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems. Enterp Inform Syst 11(1–5):122–136. https://doi.org/10.1080/17517575.2015.1080302

    Article  Google Scholar 

  10. Lucasius CK, (1989) Gerrit Application of Genetic Algorithms in Chemometrics. In: Third International Conference on Genetic Algorithms, pp 170–176

  11. Chen CT, Wu CK, Hwang CY (2008) Optimal design and control of CPU heat sink processes. Ieee Trans Comp Pack Technol 31(1):184–195. https://doi.org/10.1109/tcapt.2008.916855

    Article  Google Scholar 

  12. Chen CT, Chuang YC (2010) An intelligent run-to-run control strategy for chemical-mechanical polishing processes. IEEE Trans Semicond Manuf 23(1):109–120. https://doi.org/10.1109/tsm.2009.2039186

    Article  MathSciNet  Google Scholar 

  13. Dyer JD, Hartfield RJ, Dozier GV, Burkhalter JE (2012) Aerospace design optimization using a steady state real-coded genetic algorithm. Appl Math Comput 218(9):4710–4730. https://doi.org/10.1016/j.amc.2011.07.038

    Article  MATH  Google Scholar 

  14. Tsai CW, Lin CL, Huang CH (2011) Microbrushless DC motor control design based on real-coded structural genetic algorithm. Ieee-Asme Trans Mech 16(1):151–159. https://doi.org/10.1109/tmech.2009.2037620

    Article  Google Scholar 

  15. Valarmathi K, Devarai D, Radhakrishnan TK (2009) Real-coded genetic algorithm for system identification and controller tuning. Appl Math Model 33(8):3392–3401. https://doi.org/10.1016/j.apm.2008.11.006

    Article  Google Scholar 

  16. Amjad MK, Butt SI, Kousar R, Ahmad R, Agha MH, Zhang FP, Anjum N, Asgher U (2018) Recent research trends in genetic algorithm based flexible job shop scheduling problems. Math Probl Eng 2018:32. https://doi.org/10.1155/2018/9270802

    Article  Google Scholar 

  17. Eshelman LJ, Schaffer JD (1993) Real-Coded Genetic Algorithms and Interval-Schemata. In: Whitley LD (ed) Foundations of Genetic Algorithms, vol 2. Elsevier, pp 187–202.  https://doi.org/10.1016/B978-0-08-094832-4.50018-0

  18. Agrawal RD, Kalyanmoy, Ram A (2000) Simulated binary crossover for continuous search space. Complex Syst 9:115–148

    MathSciNet  MATH  Google Scholar 

  19. Tsutsui SY, Masayuki & Higuchi, T (1999) Multi-parent recombination with simplex crossover in real-coded genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference, pp 1–9

  20. Ono I, Kita H, Kobayashi S (2003) A real-coded genetic algorithm using the unimodal Normal distribution crossover. Springer-Verlag, New York

    Book  Google Scholar 

  21. Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10(4):371–395. https://doi.org/10.1162/106365602760972767

    Article  Google Scholar 

  22. Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895–911. https://doi.org/10.1016/j.amc.2006.10.047

    Article  MathSciNet  MATH  Google Scholar 

  23. Chuang YC, Chen CT, Hwang C (2015) A real-coded genetic algorithm with a direction-based crossover operator. Inf Sci 305:320–348. https://doi.org/10.1016/j.ins.2015.01.026

    Article  Google Scholar 

  24. Das AK, Pratihar DK (2018) A directional crossover (DX) operator for real parameter optimization using genetic algorithm. Appl Intell 49(5):1841–1865. https://doi.org/10.1007/s10489-018-1364-2

    Article  Google Scholar 

  25. Wang CF, Liu K, Shen PP (2020) A novel genetic algorithm for global optimization. Acta Math Appl Sin 36(2):482–491. https://doi.org/10.1007/s10255-020-0930-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakane T, Lu X, Zhang C (2020) A search history-driven offspring generation method for the real-coded genetic algorithm. Com Intell Neurosci 2020:1–20. https://doi.org/10.1155/2020/8835852

    Article  Google Scholar 

  27. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer-Verlag. https://doi.org/10.1007/978-3-662-03315-9

  28. Munteanu C, Lazarescu V (1999) Improving mutation capabilities in a real-coded genetic algorithm. Lecture Notes Comp 1596:138–149. https://doi.org/10.1007/10704703_11

    Article  Google Scholar 

  29. Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–230. https://doi.org/10.1016/j.amc.2007.03.046

    Article  MathSciNet  MATH  Google Scholar 

  30. Amjady N, Nasiri-Rad H (2010) Solution of nonconvex and nonsmooth economic dispatch by a new adaptive real coded genetic algorithm. Expert Syst Appl 37(7):5239–5245. https://doi.org/10.1016/j.eswa.2009.12.084

    Article  Google Scholar 

  31. Chuang YC, Chen CT, Hwang C (2016) A simple and efficient real-coded genetic algorithm for constrained optimization. Appl Soft Comput 38:87–105. https://doi.org/10.1016/j.asoc.2015.09.036

    Article  Google Scholar 

  32. Wang HB, Li XG, Li PF, Veremey EI, Sotnikova MV (2018) Application of real-coded genetic algorithm in ship weather routing. J Navig 71(4):989–1010. https://doi.org/10.1017/s0373463318000048

    Article  Google Scholar 

  33. Shojaedini E, Majd M, Safabakhsh R (2019) Novel adaptive genetic algorithm sample consensus. Appl Soft Comput 77:635–642. https://doi.org/10.1016/j.asoc.2019.01.052

    Article  Google Scholar 

  34. Zhu YH, Zhou L, Xu HH (2020) Application of improved genetic algorithm in ultrasonic location of transformer partial discharge. Neural Comput Applic 32(6):1755–1764. https://doi.org/10.1007/s00521-019-04461-w

    Article  Google Scholar 

  35. Wang JQ, Zhang MX, Ersoy OK, Sun KX, Bi YS (2019) An improved real-coded genetic algorithm using the Heuristical Normal distribution and direction-based crossover. Com Intell Neurosci 2019:17. https://doi.org/10.1155/2019/4243853

    Article  Google Scholar 

  36. Wang J, Cheng Z, Ersoy OK, Zhang P, Da IW, Dong Z (2018) Improvement analysis and application of real-coded genetic algorithm for solving constrained optimization problems. Math Probl Eng 2018(PT.6):1–16. https://doi.org/10.1155/2018/5760841

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu G, Mallipeddi R, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization

  38. Hu Y (2012) Operations research course. Tsinghua University Press, Beijing

    Google Scholar 

  39. Wang J, Zhang M, Song H, Cheng Z, Sun K (2019) Improvement and application of hybrid firefly algorithm. IEEE Access 7:165458–165477. https://doi.org/10.1109/ACCESS.2019.2952468

    Article  Google Scholar 

  40. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92. https://doi.org/10.1214/aoms/1177731944

    Article  MathSciNet  MATH  Google Scholar 

  41. Wilcoxon F, Bulletin SB, Dec N (1992) Individual comparisons by ranking methods. Springer, New York, pp 80–83. https://doi.org/10.1007/978-1-4612-4380-9_16

    Book  Google Scholar 

  42. Gupta DDAR, Roy SS (2021) A partition cum unification based genetic- firefly algorithm for single objective optimization. Sadhana 46(3):1–31. https://doi.org/10.1007/s12046-021-01641-0

    Article  Google Scholar 

  43. Jin YF, Yin ZY, Shen SL, Zhang DM (2016) A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Problems Sci Eng 1-24. https://doi.org/10.1080/17415977.2016.1259315

  44. Zhao Y, Cai Y, Cheng D (2016) A novel local exploitation scheme for conditionally breeding real-coded genetic algorithm. Multimed Tools Appl 76(17):17955–17969. https://doi.org/10.1007/s11042-016-3493-0

    Article  Google Scholar 

  45. Ali MZ, Awad NH, Suganthan PN, Shatnawi AM, Reynolds RG (2018) An improved class of real-coded genetic algorithms for numerical optimization. Neurocomputing 275:155–166. https://doi.org/10.1016/j.neucom.2017.05.054

    Article  Google Scholar 

  46. Ylidizdan G, Baykan OK (2020) A novel modified bat algorithm hybridizing by differential evolution algorithm. Expert Syst Appl 141:19. https://doi.org/10.1016/j.eswa.2019.112949

    Article  Google Scholar 

  47. Jw A, Ygw A, Kba B, Yct C, Bl A, Zhe DC (2020) An improved firefly algorithm for global continuous optimization problems. Expert Syst Appl 149:113340. https://doi.org/10.1016/j.eswa.2020.113340

    Article  Google Scholar 

  48. Darapureddy N, Karatapu N, Battula TK (2020) Optimal weighted hybrid pattern for content based medical image retrieval using modified spider monkey optimization. Int J Imaging Syst Technol 31(2):828–853. https://doi.org/10.1002/ima.22475

    Article  Google Scholar 

  49. Sun GJ, Lan YF, Zhao RQ (2019) Self-organizing hierarchical monkey algorithm with time-varying parameter. Neural Comput Applic 31(8):3245–3263. https://doi.org/10.1007/s00521-017-3265-4

    Article  Google Scholar 

  50. Gupta S, Deep K (2019) Improved sine cosine algorithm with crossover scheme for global optimization. Knowl-Based Syst 165:374–406. https://doi.org/10.1016/j.knosys.2018.12.008

    Article  Google Scholar 

  51. Isiet M, Gadala M (2019) Self-adapting control parameters in particle swarm optimization. Appl Soft Comput 83:1–57. https://doi.org/10.1016/j.asoc.2019.105653

    Article  Google Scholar 

  52. Ozsoydan FB (2019) Effects of dominant wolves in Grey wolf optimization algorithm. Appl Soft Comput 83:1–19. https://doi.org/10.1016/j.asoc.2019.105658

    Article  Google Scholar 

  53. Bajer D, Zori B (2019) An effective refined artificial bee colony algorithm for numerical optimisation. Inf Sci 504:221–275. https://doi.org/10.1016/j.ins.2019.07.022

    Article  MathSciNet  MATH  Google Scholar 

  54. Gao H, Shi YJ, Pun CM, Kwong S (2019) An improved artificial bee Colony algorithm with its application. Ieee Trans Ind Inform 15(4):1853–1865. https://doi.org/10.1109/tii.2018.2857198

    Article  Google Scholar 

  55. Anh HPH, Son NN, Van Kien C, Ho-Huu V (2018) Parameter identification using adaptive differential evolution algorithm applied to robust control of uncertain nonlinear systems. Appl Soft Comput 71:672–684. https://doi.org/10.1016/j.asoc.2018.07.015

    Article  Google Scholar 

  56. Zamuda, A (2017) Adaptive constraint handling and Success History Differential Evolution for CEC 2017 Constrained Real-Parameter Optimization. 2443–2450. https://doi.org/10.1109/CEC.2017.7969601

  57. Awad NH, Ali MZ, Suganthan PN (2017) Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp 372–379. https://doi.org/10.1109/CEC.2017.7969336

  58. Youn BD, Choi KK (2004) A new response surface methodology for reliability-based design optimization. Comput Struct 82(2–3):241–256. https://doi.org/10.1016/j.compstruc.2003.09.002

    Article  Google Scholar 

  59. Lin Z, Feng T (2016) Measuring and analyzing the contribution rate of agricultural science and technological progress in Heilongjiang reclamation area. Int J Smart Home 10(7):217–226. https://doi.org/10.14257/ijsh.2016.10.7.22

    Article  Google Scholar 

  60. Rahman MM, Mamun SAK (2017) The effects of telephone infrastructure on farmers’ agricultural outputs in China. Inf Econ Policy 41:88–95. https://doi.org/10.1016/j.infoecopol.2017.06.005

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their valuable and constructive comments that greatly helped improve the quality and completeness of this paper.

Funding

This work was supported by Natural Science Foundation of Heilongjiang Province (Grant No. LH2020C004).

Author information

Authors and Affiliations

Authors

Contributions

Haohao Song: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing-original draft, Writing–review & editing. Jiquan Wang: Conceptualization, Formal analysis, Investigation, Methodology, Resources, Validation. Li Song: Grammar modification, Diagrams process and polish. Hongyu Zhang: Formal analysis, Investigation, Data curation. Jinling Bei: Formal analysis, Investigation, Data curation. Jie Ni: Data curation. Bei Ye: Data curation.

Corresponding author

Correspondence to Jiquan Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial and no-financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This paper does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Wang, J., Song, L. et al. Improvement and application of hybrid real-coded genetic algorithm. Appl Intell 52, 17410–17448 (2022). https://doi.org/10.1007/s10489-021-03048-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-03048-0

Keywords

Navigation