iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10489-009-0209-4
Estimation of 3-D human body posture via co-registration of 3-D human model and sequential stereo information | Applied Intelligence Skip to main content

Advertisement

Log in

Estimation of 3-D human body posture via co-registration of 3-D human model and sequential stereo information

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we present a technique for estimating three-dimensional (3-D) human body posture from a set of sequential stereo images. We estimated the pixel displacements of stereo image pairs to reconstruct 3-D information. We modeled the human body with a set of ellipsoids connected by kinematic chains and parameterized with rotational angles at each body joint. To estimate human posture from the 3-D data, we developed a new algorithm based on expectation maximization (EM) with two-step iterations, assigning the 3-D data to different body parts and refining the kinematic parameters to fit the 3-D model to the data. The algorithm is iterated until it converges on the correct posture. Experimental results with synthetic and real data demonstrate that our method is capable of reconstructing 3-D human posture from stereo images. Our method is robust and generic; any useful information for locating the body parts can be integrated into our framework to improve the outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agarwal A, Triggs B (2006) Recovering 3D human pose from monocular images. IEEE Trans Pattern Anal Mach Intell 28(1):44–58

    Article  Google Scholar 

  2. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  3. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  4. Cech J, Sara R (2007) Efficient sampling of disparity space for fast and accurate matching. In: IEEE conf on computer vision and pattern recognition, Minneapolis, MN, US, June 2007, pp 1–8

  5. Conaire CO, O’Connor NE, Smeaton AF (2007) Detector adaption by maximising agreement between independent data sources. In: IEEE conf on computer vision and pattern recognition, Minneapolis, MN, USA, June 2007, pp 1–6

  6. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  7. Gupta A, Mittal A, Davis LS (2008) Constraint integration for efficient multiview pose estimation with self-occlusions. IEEE Trans Pattern Anal Mach Intell 30(3):493–506

    Article  Google Scholar 

  8. Heckbert PS (1994) Graphics gems IV. Academic Press, San Diego

    MATH  Google Scholar 

  9. Horaud R, Niskanen M, Dewaele G, Boyer E (2009) Human motion tracking by registering an articulated surface to 3D points and normals. IEEE Trans Pattern Anal Mach Intell 31(1):158–163

    Article  Google Scholar 

  10. Hua G, Yang M, Wu Y (2005) Learning to estimate human pose with data driven belief propagation. In: IEEE conf on computer vision and pattern recognition, vol 2, San Diego, CA, USA, June 2005, pp 747–754

  11. Knossow D, Ronfard R, Horaud R (2008) Human motion tracking with a kinematic parameterization of extremal contours. Int J Comput Vis 79(3):247–269

    Article  Google Scholar 

  12. Lee MW, Cohen I (2006) A model-based approach for estimating human 3D poses in static images. IEEE Trans Pattern Anal Mach Intell 28(6):905–916

    Article  Google Scholar 

  13. McCarthy JM (1990) Introduction to theoretical kinematics. MIT Press, Cambridge

    Google Scholar 

  14. Menier C, Boyer E, Raffin B (2006) 3D skeleton-based body pose recovery. In: Third international symposium on 3D data processing, visualization, and transmission, Chapel Hill, NC, USA, June 2006, pp 389–396

  15. Mori G, Malik J (2006) Recovering 3D human body configurations using shape contexts. IEEE Trans Pattern Anal Mach Intell 28(7):1052–1062

    Article  Google Scholar 

  16. Mori G, Ren X, Efros AA, Malik J (2004) Recovering human body configurations: combining segmentation and recognition. In: IEEE conf on computer vision and pattern recognition, vol 2, Washington, DC, USA, July 2004, pp 326–333

  17. Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    MATH  Google Scholar 

  18. Plankers R, Fua P (2003) Articulated soft objects for multiview shape and motion capture. IEEE Trans Pattern Anal Mach Intell 25(9):1182–1187

    Article  Google Scholar 

  19. Ramanan D, Forsyth DA, Zisserman A (2007) Tracking people by learning their appearance. IEEE Trans Pattern Anal Mach Intell 29(1):65–81

    Article  Google Scholar 

  20. Ren X, Berg AC, Malik J (2005) Recovering human body configurations using pairwise constraints between parts. In: IEEE international conf on computer vision, vol 1, Beijing, China, October 2005, pp 824–831

  21. Roberts TJ, McKenna SJ, Ricketts IW (2007) Human pose estimation using partial configurations and probabilistic regions. Int J Comput Vis 73(3):285–306

    Article  Google Scholar 

  22. Rosales R, Sclaroff S (2000) Specialized mappings and the estimation of human body pose from a single image. In: IEEE workshop on human motion (HUMO), Austin, TX, USA, December 2000, pp 19–24

  23. Sudderth EB, Ihler AT, Freeman WT, Willsky AS (2003) Nonparametric belief propagation. In: IEEE conf computer vision and pattern recognition, vol 1, Madison, WI, USA, June 2003, pp 605–612

  24. Sundaresan A, Chellappa R (2008) Model driven segmentation of articulating humans in Laplacian Eigenspace. IEEE Trans Pattern Anal Mach Intell 30(10):1771–1785

    Article  Google Scholar 

  25. Sundaresan A, Chellappa R, RoyChowdhury R (2004) Multiple view tracking of humans modelled by kinematic chains. In: IEEE conf on image processing, vol 2, Singapore, October 2004, pp 1009–1012

  26. Taylor CJ (2000) Reconstruction of articulated objects from point correspondences in a single uncalibrated image. Comput Vis Image Underst 80(3):349–363

    Article  MATH  Google Scholar 

  27. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 209(5500):2319–2323

    Article  Google Scholar 

  28. Toyoda T, Hasegawa O (2008) Random field model for integration of local information and global information. IEEE Trans Pattern Anal Mach Intell 30(8):1483–1489

    Article  Google Scholar 

  29. Urtasun R, Fua P (2004) 3D human body tracking using deterministic temporal motion models. In: European conference on computer vision, vol 3, Prague, Czech Republic, May 2004, pp 92–106

  30. Wang L, Tan T, Ninh H, Hu W (2003) Silhouette analysis-based gait recognition for human identification. IEEE Trans Pattern Anal Mach Intell 25(12):1505–1518

    Article  Google Scholar 

  31. Wang R, Leow WK (2005) Human body posture refinement by nonparametric belief propagation. In: IEEE conf. on image processing, vol 3, Genoa, Italy, September 2005, pp 1272–1275

  32. Yang HD, Lee SW (2007) Reconstruction of 3D human body pose from stereo image sequences based on top-down learning. J Pattern Recogn 40(11):3120–3131

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Seong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thang, N.D., Kim, TS., Lee, YK. et al. Estimation of 3-D human body posture via co-registration of 3-D human model and sequential stereo information. Appl Intell 35, 163–177 (2011). https://doi.org/10.1007/s10489-009-0209-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-009-0209-4

Keywords

Navigation