iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10485-018-9513-7
Met-Like Categories Amongst Concrete Topological Categories | Applied Categorical Structures Skip to main content
Log in

Met-Like Categories Amongst Concrete Topological Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

When replacing the non-negative real numbers with their addition by a commutative quantale \(\mathsf{V}\), under a metric lens one may then view small \(\mathsf{V}\)-categories as sets that come with a \(\mathsf{V}\)-valued distance function. The ensuing category \(\mathsf{V}\text {-}\mathbf{Cat}\) is well known to be a concrete topological category that is symmetric monoidal closed. In this paper we show which concrete symmetric monoidal-closed topological categories may be fully and bireflectively embedded into \(\mathsf{V}\text {-}\mathbf{Cat}\), for some \(\mathsf{V}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Wiley, New York (1990)

    MATH  Google Scholar 

  2. Bentley, H.L., Herrlich, H., Lowen-Colebunders, E.: Convergence. J. Pure Appl. Algebra 68, 27–45 (1990)

    Article  MathSciNet  Google Scholar 

  3. Borceux, F.: Handbook of Categorical Algebra 1, 2, 3. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  4. Brock, P., Kent, D.C.: Approach spaces, limit tower spaces, and probabilistic convergence spaces. Appl. Categ. Struct. 5, 99–110 (1997)

    Article  MathSciNet  Google Scholar 

  5. Činčura, J.: Tensor products in the category of topological spaces. Comment. Math. Univ. Carol. 20, 431–446 (1979)

    MathSciNet  MATH  Google Scholar 

  6. Činčura, J.: On a tensor product in initially structured categories. Math. Slovaca 29, 245–255 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Činčura, J.: Tensor products in categories of topological spaces. Appl. Categ. Struct. 5, 111–121 (1997)

    Article  MathSciNet  Google Scholar 

  8. Clementino, M.M., Hofmann, D.: Topological features of lax algebras. Appl. Categ. Struct. 11(3), 267–286 (2003)

    Article  MathSciNet  Google Scholar 

  9. Clementino, M.M., Hofmann, D., Tholen, W.: One setting for all: metric, topology uniformity, approach structure. Appl. Categ. Struct. 12(2), 127–154 (2004)

    Article  MathSciNet  Google Scholar 

  10. Clementino, M.M., Tholen, W.: Metric, topology and multicategory-a common approach. J. Pure Appl. Algebra 179(1–2), 13–47 (2003)

    Article  MathSciNet  Google Scholar 

  11. Fischer, H.R.: Limesräume. Math. Ann. 137, 269–303 (1959)

    Article  MathSciNet  Google Scholar 

  12. Garner, R.: Topological functors as total categories. Theory Appl. Categ. 29(15), 406–421 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Greve, G.: How many monoidal closed structures are there in TOP? Arch. Math. 34, 538–539 (1980)

    Article  MathSciNet  Google Scholar 

  14. Greve, G.: General construction of monoidal closed structures in topological, uniform and nearness spaces. In: Lecture Notes in Mathematics, vol. 962, pp. 100–114. Springer, Berlin (1982)

    Google Scholar 

  15. Herrlich, H.: Topological functors. Gen. Topol. Appl. 4(2), 125–142 (1974)

    Article  MathSciNet  Google Scholar 

  16. Hofmann, D.: Topological theories and closed objects. Adv. Math. 215, 789–824 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hofmann, D., Reis, C.D.: Probabilistic metric spaces as enriched categories. Fuzzy Sets Syst. 210, 1–21 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hofmann, D., Seal, G.J., Tholen, W. (eds.): Monoidal Topology: A Categorical Approach to Order, Metric, and Topology. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  19. Isbell, J.R.: Uniform Spaces. American Mathematical Society, Providence (1964)

    Book  Google Scholar 

  20. Jäger, G.: A convergence theory for probabilistic metric spaces. Quaest. Math. 38(4), 587–599 (2015)

    Article  MathSciNet  Google Scholar 

  21. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note Series, vol. 64. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  22. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano, 43:135–166. Reprinted in: Reprints in Theory and Applications of Categories, 1:1–37 (2002)

    Article  MathSciNet  Google Scholar 

  23. Logar, A., Rossi, F.: Monoidal closed structures on categories with constant maps. J. Aust. Math. Soc. Ser. A 38, 175–185 (1985)

    Article  MathSciNet  Google Scholar 

  24. Lowen, R.: Approach Spaces, the Missing Link in the Topology-Uniformity-Metric Triad. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  25. Lowen-Colebunders, E.: Function Classes of Cauchy Continuous Maps. Marcel Dekker, New York (1989)

    MATH  Google Scholar 

  26. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  27. Pedicchio, M.C.: Closed structures on the category of topological spaces determined by filters. Bull. Aust. Math. Soc. 28(2), 161–174 (1983)

    Article  MathSciNet  Google Scholar 

  28. Pedicchio, M.C., Rossi, F.: A remark on monoidal closed structures on TOP. Rend. Circ. Mat. Palermo Ser. II(11), 77–79 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Porst, H.-E., Wischnewsky, M.B.: Every topological category is convenient for Gel’fand duality. Manuscr. Math. 25, 169–204 (1978)

    Article  Google Scholar 

  30. Porst, H.-E., Wischnewsky, M.B.: Existence and applications of monoidally closed structures in topological categories. In: Lecture Notes in Mathematics, vol. 719, pp. 277–292. Springer, Berlin (1979)

    Google Scholar 

  31. Robertson, W.A.: Convergence as a Nearness Concept.. Ph.D. thesis, Carleton University (1975)

  32. Rosenthal, K.I.: Quantales and Their Applications. Addison Wesley Longman, Harlow (1990)

    MATH  Google Scholar 

  33. Seal, G.J.: Canonical and op-canonical lax algebras. Theory Appl. Categ. 14, 221–243 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Tholen, W.: Lax Distributive Laws, I. arXiv:1603.06251. Accessed Mar 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Tholen.

Additional information

Communicated by Eva Colebunders.

Dedicated in gratitude to Bob Lowen, founder of Applied Categorical Structures

Partial financial assistance by the Natural Sciences and Engineering Research Council (NSERC) of Canada is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tholen, W. Met-Like Categories Amongst Concrete Topological Categories. Appl Categor Struct 26, 1095–1111 (2018). https://doi.org/10.1007/s10485-018-9513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-018-9513-7

Keywords

Mathematics Subject Classification

Navigation