iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10485-010-9229-9
Idempotent Convexity and Algebras for the Capacity Monad and its Submonads | Applied Categorical Structures Skip to main content
Log in

Idempotent Convexity and Algebras for the Capacity Monad and its Submonads

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Idempotent analogues of convexity are introduced. It is proved that the category of algebras for the capacity monad in the category of compacta is isomorphic to the category of (max, min)-idempotent biconvex compacta and their biaffine maps. It is also shown that the category of algebras for the monad of sup-measures ((max, min)-idempotent measures) is isomorphic to the category of (max, min)-idempotent convex compacta and their affine maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akian, M.: Densities of invariant measures and large deviations. Trans. Am. Math. Soc. 351(11), 4515–4543 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barr, M., Wells, Ch.: Toposes, Triples and Theories. Springer, NY (1988)

    Google Scholar 

  3. Choquet, G.: Theory of capacity. Ann. l’Institute Fourier. 5, 131–295 (1953–1954)

    MathSciNet  Google Scholar 

  4. Cohen, G., Gaubert, S., Quadrat, J.-P.: Duality and separation theorems in idempotent semimodules. arXiv:math/0212294v2 [math.FA], 29 Sept 2003

  5. Day, A.: Filter monads, continuous lattices and closure systems. Can. J. Math. 27(1), 50–59 (1975)

    Article  MATH  Google Scholar 

  6. Eichberger, J., Kelsey, D.: Non-additive beliefs and strategic equilibria. Games Econom. Behav. 30, 183–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eilenberg, S., Moore, I.C.: Adjoint functors and triples. Ill. J. Math. 9(3), 381–398 (1965)

    MathSciNet  MATH  Google Scholar 

  8. Hlushak, I.D., Nykyforchyn, O.R.: Submonads of the capacity monad. Carpath. J. Math. 24(1), 56–67 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  10. Lawson, I.D.: Topological semilattices with small semilattices. J. Lond. Math. Soc. 11, 719–724 (1969)

    Article  MathSciNet  Google Scholar 

  11. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, NY (1998)

    MATH  Google Scholar 

  12. McWaters, M.M.: A note on topological semilattices. J. Lond. Math. Soc. Ser. 2 1(4), 64–66 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, L.: Integral representation of continuous comonotonically additive functionals. Trans. Am. Math. Soc. 350(5), 1811–1822 (1998)

    Article  MATH  Google Scholar 

  14. O’Brien, G.L., Verwaat, W.: How subsadditive are subadditive capacities? Comment. Math. Univ. Carol. 35(2), 311–324 (1994)

    MATH  Google Scholar 

  15. Radul, T.N.: The monad of inclusion hyperspaces and its algebras. Ukr. Math. J. 42(6), 712–716 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Świrszcz, T.: Monadic functors and convexity. Bull. Acad. Pol. Sci., Sér Sci. Math. Astron. Phys. 22(1), 39–42 (1974)

    MATH  Google Scholar 

  18. Teleiko, A., Zarichnyi, M.: Categorical topology of compact Hausdorff spaces. In: Math. Studies Monograph Series, vol. 5. VNTL Publishers, Lviv (1999)

    Google Scholar 

  19. Wyler O.: Algebraic theories of continuous lattices. Lect. Notes Math. 871, 390–413 (1981)

    Article  Google Scholar 

  20. Zarichnyi, M.M.: Superextension monad and its algebras. Ukr. Mat. J. 39(3), 303–309 (1981) (in Russian)

    MathSciNet  Google Scholar 

  21. Zarichnyi, M.M., Nykyforchyn, O.R.: Capacity functor in the category of compacta. Sb.: Math. 199(2), 159–184 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Repovš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nykyforchyn, O., Repovš, D. Idempotent Convexity and Algebras for the Capacity Monad and its Submonads. Appl Categor Struct 19, 709–727 (2011). https://doi.org/10.1007/s10485-010-9229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-010-9229-9

Keywords

Mathematics Subject Classifications (2010)

Navigation