Abstract
We consider a category \({\mathcal H}^{\ominus \otimes}\) (the homotopy category of homotopy squares) whose objects are homotopy commutative squares of spaces and whose morphisms are cubical diagrams subject to a coherent homotopy relation. The main result characterises the isomorphisms of \({\mathcal H}^{\ominus \otimes}\) to be the cube morphisms whose forward arrows are homotopy equivalences. As a first application of the new category we give a direct 2-track theoretic definition of the quaternary Toda bracket operation.
Similar content being viewed by others
References
Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces. In: Lecture Notes in Mathematics, vol. 347. Springer, Berlin (1973)
Brown, R.: Out of line. R. Inst. Proc. 64, 207–243 (1992)
Brown, R., Higgins, P.J.: The equivalence of ∞-groupoids and crossed complexes. Cahiers Topologie Géom. Différentielle Catég. 22, 371–386 (1981)
Brown, R., Higgins, P.J.: On the algebra of cubes. J. Pure Appl. Algebra 21, 233–260 (1981)
Baues, H.J., Hardie, K.A., Kamps, K.H.: The self-equivalence groups in certain coherent homotopy categories. Tsukuba J. Math 21, 213–228 (1997)
Edwards, D.A., Hastings, H.M.: Cech and Steenrod homotopy theories with applications to geometric topology. In: Lecture Notes in Mathematics, vol. 542. Springer, Berlin (1976)
Hardie, K.A.: On the category of homotopy pairs. Topology Appl. 14, 59–69 (1982)
Hardie, K., Hilton, P.: Homotopies of nullhomotopies in a module category I. J. Pure Appl. Algebra 68, 149–163 (1990)
Hardie, K.A., Jansen, A.V.: The Puppe and Nomura operators in the category of homotopy pairs. In: Categorical Aspects of Topology and Analysis, Proceedings, Ottawa 1980, Lecture Notes in Mathematics, vol. 915, pp. 112–126. Springer, Berlin (1982)
Hardie, K.A., Jansen, A.V.: Toda brackets and the category of homotopy pairs. Quaestiones Math. 6, 107–128 (1983)
Hardie, K.A., Kamps, K.H.: Coherent homotopy over a fixed space. In: James, I.M. (ed.) Handbook of Algebraic Topology, Chapter 5, pp. 195–211. Elsevier Science B.V., Amsterdam (1995)
Hardie, K.A., Kamps, K.H.: A twisted triple category of 2-track commutative cubes. In: Gähler, W., Preuss, G. (eds.) Categorical Structures and their Applications, pp. 121–142. World Scientific, Singapore (2004)
Hardie, K.A., Kamps, K.H., Kieboom, R.W.: A homotopy 2–groupoid of a Hausdorff space. Appl. Categ. Structures 8, 209–234 (2000)
Hardie, K.A., Kamps, K.H., Marcum, H.J.: Computing homotopy groups of a homotopy pullback. Quaestiones Math. 14, 179–199 (1991)
Hardie, K.A., Kamps, K.H., Marcum, H.J.: The Toda bracket in the homotopy category of a track bicategory. J. Pure Appl. Algebra 175, 109–133 (2002)
Hardie, K.A., Kamps, K.H., Porter, T.: The coherent homotopy category over a fixed space is a category of fractions. Topology Appl. 40, 265–274 (1991)
Kamps, K.H., Porter, T.: Abstract Homotopy and Simple Homotopy Theory. World Scientific, Singapore (1997)
Leitch, R.D.: The homotopy commutative cube. J. London Math. Soc. (2) 9, 23–29 (1974)
Ôguchi, K.: A generalisation of secondary composition and applications. J. Fac. Sci. Tokyo Univ. Sect. 1.10, 29–79 (1963)
Toda, H.: Composition methods in homotopy groups of spheres. In: Annals of Mathematics Studies No. 49. Princeton University Press, Princeton (1962)
Toda, H.: Quelques tables des groupes d’homotopie des groupes de Lie. C. R. Acad. Sci. Paris 241, 922–923 (1955)
Vogt, R.M.: A note on homotopy equivalences. Proc. Amer. Math. Soc. 32, 627–629 (1972)
Vogt, R.M.: Homotopy limits and colimits. Math. Z. 134, 11–52 (1973)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hardie, K.A., Kamps, K.H. & Witbooi, P.J. A Coherent Homotopy Category of 2-track Commutative Cubes. Appl Categor Struct 19, 39–60 (2011). https://doi.org/10.1007/s10485-008-9174-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-008-9174-z