iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10485-008-9174-z
A Coherent Homotopy Category of 2-track Commutative Cubes | Applied Categorical Structures Skip to main content
Log in

A Coherent Homotopy Category of 2-track Commutative Cubes

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We consider a category \({\mathcal H}^{\ominus \otimes}\) (the homotopy category of homotopy squares) whose objects are homotopy commutative squares of spaces and whose morphisms are cubical diagrams subject to a coherent homotopy relation. The main result characterises the isomorphisms of \({\mathcal H}^{\ominus \otimes}\) to be the cube morphisms whose forward arrows are homotopy equivalences. As a first application of the new category we give a direct 2-track theoretic definition of the quaternary Toda bracket operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces. In: Lecture Notes in Mathematics, vol. 347. Springer, Berlin (1973)

    Google Scholar 

  2. Brown, R.: Out of line. R. Inst. Proc. 64, 207–243 (1992)

    Google Scholar 

  3. Brown, R., Higgins, P.J.: The equivalence of ∞-groupoids and crossed complexes. Cahiers Topologie Géom. Différentielle Catég. 22, 371–386 (1981)

    MATH  MathSciNet  Google Scholar 

  4. Brown, R., Higgins, P.J.: On the algebra of cubes. J. Pure Appl. Algebra 21, 233–260 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baues, H.J., Hardie, K.A., Kamps, K.H.: The self-equivalence groups in certain coherent homotopy categories. Tsukuba J. Math 21, 213–228 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Edwards, D.A., Hastings, H.M.: Cech and Steenrod homotopy theories with applications to geometric topology. In: Lecture Notes in Mathematics, vol. 542. Springer, Berlin (1976)

    Google Scholar 

  7. Hardie, K.A.: On the category of homotopy pairs. Topology Appl. 14, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hardie, K., Hilton, P.: Homotopies of nullhomotopies in a module category I. J. Pure Appl. Algebra 68, 149–163 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hardie, K.A., Jansen, A.V.: The Puppe and Nomura operators in the category of homotopy pairs. In: Categorical Aspects of Topology and Analysis, Proceedings, Ottawa 1980, Lecture Notes in Mathematics, vol. 915, pp. 112–126. Springer, Berlin (1982)

    Google Scholar 

  10. Hardie, K.A., Jansen, A.V.: Toda brackets and the category of homotopy pairs. Quaestiones Math. 6, 107–128 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hardie, K.A., Kamps, K.H.: Coherent homotopy over a fixed space. In: James, I.M. (ed.) Handbook of Algebraic Topology, Chapter 5, pp. 195–211. Elsevier Science B.V., Amsterdam (1995)

    Chapter  Google Scholar 

  12. Hardie, K.A., Kamps, K.H.: A twisted triple category of 2-track commutative cubes. In: Gähler, W., Preuss, G. (eds.) Categorical Structures and their Applications, pp. 121–142. World Scientific, Singapore (2004)

    Chapter  Google Scholar 

  13. Hardie, K.A., Kamps, K.H., Kieboom, R.W.: A homotopy 2–groupoid of a Hausdorff space. Appl. Categ. Structures 8, 209–234 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hardie, K.A., Kamps, K.H., Marcum, H.J.: Computing homotopy groups of a homotopy pullback. Quaestiones Math. 14, 179–199 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hardie, K.A., Kamps, K.H., Marcum, H.J.: The Toda bracket in the homotopy category of a track bicategory. J. Pure Appl. Algebra 175, 109–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hardie, K.A., Kamps, K.H., Porter, T.: The coherent homotopy category over a fixed space is a category of fractions. Topology Appl. 40, 265–274 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kamps, K.H., Porter, T.: Abstract Homotopy and Simple Homotopy Theory. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  18. Leitch, R.D.: The homotopy commutative cube. J. London Math. Soc. (2) 9, 23–29 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ôguchi, K.: A generalisation of secondary composition and applications. J. Fac. Sci. Tokyo Univ. Sect. 1.10, 29–79 (1963)

    Google Scholar 

  20. Toda, H.: Composition methods in homotopy groups of spheres. In: Annals of Mathematics Studies No. 49. Princeton University Press, Princeton (1962)

    Google Scholar 

  21. Toda, H.: Quelques tables des groupes d’homotopie des groupes de Lie. C. R. Acad. Sci. Paris 241, 922–923 (1955)

    MATH  MathSciNet  Google Scholar 

  22. Vogt, R.M.: A note on homotopy equivalences. Proc. Amer. Math. Soc. 32, 627–629 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vogt, R.M.: Homotopy limits and colimits. Math. Z. 134, 11–52 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Witbooi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardie, K.A., Kamps, K.H. & Witbooi, P.J. A Coherent Homotopy Category of 2-track Commutative Cubes. Appl Categor Struct 19, 39–60 (2011). https://doi.org/10.1007/s10485-008-9174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-008-9174-z

Keywords

Mathematics Subject Classifications (2000)

Navigation