iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10479-020-03758-7
Optimizing production and maintenance for the service-oriented manufacturing supply chain | Annals of Operations Research Skip to main content
Log in

Optimizing production and maintenance for the service-oriented manufacturing supply chain

  • S.I. : Scalable Optimization and Decision Making in OR
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This work investigates a service-oriented manufacturing supply chain in which a manufacturer and an operator make decisions about equipment quality and maintenance service. Both the manufacturer and the operator have to make tradeoffs between equipment quality and maintenance service to maximize their own profit, which can lead to supply chain conflict. Decision models under decentralized decisions are formulated first for the manufacturer and the operator to make their respective independent optimal decisions, and a decision model under centralized decisions is formulated to obtain optimal decisions for the supply chain. The results show that channel coordination is not achievable and an agreement cannot be reached with decentralized decisions. To address this issue, two, i.e., a cost-sharing and a performance-based, strategies are introduced to coordinate the supply chain. The results reveal that the manufacturer and the operator are motivated to find the optimal decisions to maximize the profit of the supply chain when the subsidy rate or the penalty rate is equal to the profit margin of the operator. The models and the coordination strategies are extended to the situation considering the learning behavior of the manufacturer. The results show that the learning behavior impacts the profit of the supply chain with coordination and the preferences of the coordination strategy in the supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arora, A., Caulkins, J. P., & Telang, R. (2006). Research note—Sell first, fix later: Impact of patching on software quality. Management Science, 52(3), 465–471.

    Article  Google Scholar 

  • August, T., & Niculescu, M. F. (2013). The influence of software process maturity and customer error reporting on software release and pricing. Management Science, 59(12), 2702–2726.

    Article  Google Scholar 

  • Benjaafar, S., Kong, G., Li, X., & Courcoubetis, C. (2019). Peer-to-peer product sharing: Implications for ownership, usage, and social welfare in the sharing economy. Management Science, 65(2), 477–493.

    Article  Google Scholar 

  • Camm, J. D., Evans, J. R., & Womer, N. K. (1987). The unit learning-curve approximation of total cost. Computers & Industrial Engineering, 12(13), 205–213.

    Article  Google Scholar 

  • Cho, W., Subramanyam, R., & Xia, M. (2013). Vendors’ incentives to invest in software quality in enterprise systems. Decision Support Systems, 56(8), 27–36.

    Article  Google Scholar 

  • Fry, T. D., Steele, D. C., & Saladin, B. A. (1994). A service-oriented manufacturing strategy. International Journal of Operations and Production Management, 14(10), 17–29.

    Article  Google Scholar 

  • Gao, G.-X., Fan, Z.-P., Fang, X., & Lim, Y. F. (2018). Optimal Stackelberg strategies for financing a supply chain through online peer-to-peer lending. European Journal of Operational Research, 267(2), 585–597.

    Article  Google Scholar 

  • Gao, G.-X., Fang, X., & Lim, Y. F. (2020). Impact of wishful-thinking investors in online peer-to-peer lending on SMEs’ operations. Working paper. SSRN. Retrieved July 16, 2020 from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3566722.

  • Gebauer, H., Paiola, M., & Saccani, N. (2013). Characterizing service networks for moving from products to solutions. Industrial Marketing Management, 42(1), 31–46.

    Article  Google Scholar 

  • He, N., Jiang, Z.-Z., Wang, J., Sun, M., & Xie, G. (2020). Maintenance optimisation and coordination with fairness concerns for the service-oriented manufacturing supply chain. Enterprise Information Systems. https://doi.org/10.1080/17517575.2020.1746406.

    Article  Google Scholar 

  • Jain, N., Hasija, S., & Popescu, D. G. (2013). Optimal contracts for outsourcing of repair and restoration services. Operations Research, 61(6), 1295–1311.

    Article  Google Scholar 

  • Jamshidi, R., & Esfahani, M. M. S. (2015). Reliability-based maintenance and job scheduling for identical parallel machines. International Journal of Production Research, 53(4), 1216–1227.

    Article  Google Scholar 

  • Ji, Y., Kumar, S., Mookerjee, V. S., Sethi, S. P., & Yeh, D. (2011). Optimal enhancement and lifetime of software systems: A control theoretic analysis. Production and Operations Management, 20(6), 889–904.

    Article  Google Scholar 

  • Karaer, Ö., Kraft, T., & Khawam, J. (2017). Buyer and nonprofit levers to improve supplier environmental performance. Production and Operations Management, 26(6), 1163–1190.

    Article  Google Scholar 

  • Keachie, E. C., & Fontana, R. J. (1966). Effect of learning on optimal lot-size. Management Science, 13(2), 102–108.

    Article  Google Scholar 

  • Kim, C. S., Djamaludin, I., & Murthy, D. N. P. (2004). Warranty and discrete preventive maintenance. Reliability Engineering and System Safety, 84(3), 301–309.

    Article  Google Scholar 

  • Kim, S.-H., Cohen, M. A., & Netessine, S. (2007). Performance contracting in after-sales service supply chains. Management Science, 53(12), 1843–1858.

    Article  Google Scholar 

  • Kim, S.-H., & Tomlin, B. (2013). Guilt by association: Strategic failure prevention and recovery capacity investments. Management Science, 59(7), 1631–1649.

    Article  Google Scholar 

  • Kirubakaran, B., & Ilangkumaran, M. (2016). Selection of optimum maintenance strategy based on FAHP integrated with GRA-TOPSIS. Annals of Operations Research, 245(1–2), 285–313.

    Article  Google Scholar 

  • Lim, Y. F., Lu, B., Wang, R., & Zhang, W. (2020). Flexibly serving a finite number of heterogeneous jobs in a tandem system. Production and Operations Management, 29(6), 1431–1447.

    Article  Google Scholar 

  • Lim, Y. F., Wang, Y., & Wu, Y. (2015). Consignment contracts with revenue sharing for a capacitated retailer and multiple manufacturers. Manufacturing and Service Operations Management, 17(4), 527–537.

    Article  Google Scholar 

  • Lu, H.-P., & Weng, C.-I. (2018). Smart manufacturing technology, market maturity analysis and technology roadmap in the computer and electronic product manufacturing industry. Technological Forecasting and Social Change, 133(8), 85–94.

    Article  Google Scholar 

  • Meier, H., Völker, O., & Funke, B. (2011). Industrial product-service systems (IPS 2). The International Journal of Advanced Manufacturing Technology, 52(9–12), 1175–1191.

    Article  Google Scholar 

  • Milgrom, P., & Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2), 583–601.

    Article  Google Scholar 

  • Murthy, D. N. P., & Asgharizadeh, E. (1999). Optimal decision making in a maintenance service operation. European Journal of Operational Research, 116(2), 259–273.

    Article  Google Scholar 

  • Pascual, R., & Ortega, J. H. (2006). Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts. Reliability Engineering and System Safety, 91(2), 241–248.

    Article  Google Scholar 

  • Qin, X., Shao, L., & Jiang, Z.-Z. (2020). Contract design for equipment after-sales service with business interruption insurance. European Journal of Operational Research, 284(1), 176–187.

    Article  Google Scholar 

  • Taleizadeh, A. A. (2018). A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial backordering. Annals of Operations Research, 261(1–2), 303–337.

    Article  Google Scholar 

  • Tarakci, H. (2016). Two types of learning effects on maintenance activities. International Journal of Production Research, 54(6), 1–14.

    Article  Google Scholar 

  • Tarakci, H., Tang, K., Moskowitz, H., & Plante, R. (2006). Incentive maintenance outsourcing contracts for channel coordination and improvement. IIE Transactions, 38(8), 671–684.

    Article  Google Scholar 

  • Tarakci, H., Tang, K., & Teyarachakul, S. (2009). Learning effects on maintenance outsourcing. European Journal of Operational Research, 192(1), 138–150.

    Article  Google Scholar 

  • Taylor, T. A. (2002). Supply chain coordination under channel rebates with sales effort effects. Management Science, 48(8), 955–1101.

    Article  Google Scholar 

  • Tseng, S. T. (1996). Optimal preventive maintenance policy for deteriorating production systems. IIE Transactions, 28(8), 687–694.

    Article  Google Scholar 

  • Tseng, F.-S., & Yeh, Y. (2014). Maintenance outsourcing coordination with risk-averse contractors. Journal of the Operational Research Society, 65(11), 1760–1769.

    Article  Google Scholar 

  • Wang, K., Jiang, Z., Li, N., & Geng, N. (2014). Optimal production control of a service-oriented manufacturing system with customer balking behavior. Flexible Services and Manufacturing Journal, 26(3), 387–407.

    Article  Google Scholar 

  • Wang, P., & Lim, Y. F. (2020). Managing stochastic bucket brigades on discrete work stations. Working paper, Lee Kong Chian School of Business, Singapore Management University.

  • Wang, Y., Wallace, S. W., Shen, B., & Choi, T. M. (2015). Service supply chain management: A review of operational models. European Journal of Operational Research, 247(3), 685–698.

    Article  Google Scholar 

  • Zhen, L. (2012). An analytical study on service-oriented manufacturing strategies. International Journal of Production Economics, 139(1), 220–228.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (71971052, 71671033, 71472034), the Fundamental Research Funds for the Central Universities (N2006006), the Fund for Innovative Research Groups of the National Natural Science Foundation of China (71621061), the Major International Joint Research Project of the National Natural Science Foundation of China (71520107004) and the 111 Project (B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuwei Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A1: Proof of Lemma 1

Taking the first and the second partial derivatives of \( \varPi_{m} \) with respect to \( T_{i} \) gives \( \frac{{\partial \varPi_{m} }}{{\partial T_{i} }} = P - \frac{{PT_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } - \frac{{C_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } + \xi = 0 \) and \( \frac{{\partial^{2} \varPi_{m} }}{{\partial T_{i}^{2} }} = - \frac{{\left( {PT_{r} + C_{r} } \right)\lambda_{0}^{'} \left( {T_{i} } \right)}}{\tau } < 0 \), respectively. Thus, \( \varPi_{m} \) is concave in \( T_{i} \). The first-order condition \( \partial \varPi_{m} /\partial T_{i} = 0 \) is satisfied when \( \lambda_{0} \left( {T_{i} } \right) = \)\( [(P + \xi )\tau ]/(PT_{r} + C_{r} ) \). Since \( \lambda_{0} (T_{i} ) \) strictly increases as \( T_{i} \) increases, \( T_{1m}^{*} = T_{2m}^{*} = \cdots = T_{Nm}^{*} = \)\( Y/N - T_{p} \) can be obtained. Plugging \( T_{1m}^{*} = T_{2m}^{*} = \cdots = T_{Nm}^{*} = \frac{Y}{N} - T_{p} \) into (6), \( \varPi_{m} = \)\( P\left[ {Y - NT_{p} - NT_{r} M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} \right] - C\left( \tau \right) - N\left[ {C_{p} + C_{r} M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} \right] + W \) can be obtained.

Also \( \frac{{\partial^{2} \varPi_{m} }}{{\partial N^{2} }} = \frac{1}{\tau }\left( {PT_{r} + C_{r} } \right)g^{'} \left( N \right) < 0 \) and \( \frac{{\partial^{2} \varPi_{m} }}{{\partial \tau^{2} }} = \frac{{ - 2N\left( {PT_{r} + C_{r} } \right)}}{{\tau^{3} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } - C''\left( \tau \right) < 0 \) exist. From the first-order conditions \( \partial \varPi_{m} /\partial N = \frac{1}{\tau }\left( {PT_{r} + C_{r} } \right)g\left( N \right) - \left( {PT_{p} + C_{p} } \right) = 0 \) and \( \partial \varPi_{m} /\partial \tau = \frac{{NPT_{r} }}{{\tau^{2} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } - C^{'} \left( \tau \right) + \frac{{NC_{r} }}{{\tau^{2} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } = 0 \), the decisions of the manufacturer \( (\tau_{m}^{*} ,N_{m}^{*} ) \) can be obtained.

1.2 A2: Proof of Lemma 2

Similar to the proof of Lemma 1, the Lagrangian function is applied to the profit function of the operator, and the first-order condition is satisfied when \( \lambda_{0} (T_{1o}^{*} ) = \lambda_{0} (T_{2o}^{*} ) = \cdots = \lambda_{0} (T_{No}^{*} ) \). Hence, \( T_{1o}^{*} = T_{2o}^{*} = \cdots = T_{No}^{*} = \frac{Y}{N} - T_{p} \) can be obtained. Plugging \( T_{1o}^{*} = T_{2o}^{*} = \ldots = T_{No}^{*} = \frac{Y}{N} - T_{p} \) into the profit function of the operator, \( \varPi_{o} = \left( {R - P} \right)\left[ {Y - NT_{p} - NT_{r} M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} \right] - W \) can be obtained.

Taking the first and the second partial derivatives of \( \varPi_{o} \) with respect to \( N \) gives \( \frac{{\partial \varPi_{o} }}{\partial N} = \)\( - \left( {R - P} \right)T_{p} { + }\frac{1}{\tau }\left( {R - P} \right)T_{r} g\left( N \right) \) and \( \frac{{\partial^{2} \varPi_{o} }}{{\partial N^{2} }} = \frac{1}{\tau }\left( {R - P} \right)T_{r} g^{\prime}\left( N \right) < 0 \), respectively, and taking the first and the second partial derivatives of \( \varPi_{o} \) with respect to \( \tau \) gives \( \frac{{\partial \varPi_{o} }}{\partial \tau } = \frac{{N\left( {R - P} \right)T_{r} }}{{\tau^{2} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } \) and \( \frac{{\partial^{2} \varPi_{o} }}{{\partial \tau^{2} }} = \frac{{ - 2N\left( {R - P} \right)T_{r} }}{{\tau^{3} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } < 0 \), respectively. Apparently, \( \varPi_{o} \) is a concave function of \( N \) and \( \tau \). From the first-order conditions \( \partial \varPi_{o} /\partial N = 0 \) and \( \partial \varPi_{o} /\partial \tau = 0 \), the optimal solutions of the operator can be obtained.

1.3 A3: Proof of Lemma 3

The Lagrangian function is applied to the profit function under centralized decisions

$$ \;\varPi_{c} = R\sum\limits_{i = 1}^{N} {\left[ {T_{i} - T_{r} M\left( {\tau ,T_{i} } \right)} \right]} - C\left( \tau \right) - \sum\limits_{i = 1}^{N} {\left[ {C_{p} + C_{r} M\left( {\tau ,T_{i} } \right)} \right]} + \xi \left[ {NT_{p} + \sum\limits_{i = 1}^{N} {T_{i} } - Y} \right] . $$
(37)

Taking the first and the second partial derivatives of \( \varPi_{c} \) with respect to \( T_{i} \) gives \( \frac{{\partial \varPi_{c} }}{{\partial T_{i} }} = R - \frac{{RT_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } - \frac{{C_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } + \xi \; \) and \( \frac{{\partial^{2} \varPi_{c} }}{{\partial T_{i}^{2} }} = - \frac{{\left( {RT_{r} + C_{r} } \right) \cdot \lambda^{\prime}_{0} \left( {T_{i} } \right)}}{\tau } < 0 \), respectively. Therefore, \( \varPi_{c} \) is concave in \( T_{i} \). The first-order condition \( \partial \varPi_{c} /\partial T_{i} = 0 \) is satisfied when \( \lambda_{0} \left( {T_{i} } \right) = \)\( [(R + \xi )\tau ]/(RT_{r} + C_{r} ) \). Since \( \lambda_{0} (T_{i} ) \) strictly increases as \( T_{i} \) increases, \( T_{1c}^{*} = T_{2c}^{*} = \cdots = T_{Nc}^{*} = \frac{Y}{N} - T_{p} \) can be obtained. Plugging \( T_{1c}^{*} = T_{2c}^{*} = \cdots = T_{Nc}^{*} = \frac{Y}{N} - T_{p} \) into (10), \( \varPi_{c} = R\left[ {Y - NT_{p} - NT_{r} M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} \right] - N\left[ {C_{p} + C_{r} M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} \right] \) is obtained. Taking the first and the second partial derivatives of \( \varPi_{c} \) with respect to \( N \) gives \( \frac{{\partial \varPi_{c} }}{\partial N} = - \left( {RT_{p} + C_{p} } \right) + \frac{1}{\tau }\left( {RT_{r} + C_{r} } \right)g\left( N \right) \) and \( \frac{{\partial^{2} \varPi_{c} }}{{\partial N^{2} }} = \)\( \frac{1}{\tau }\left( {RT_{r} + C_{r} } \right)g^{\prime}\left( N \right) < 0 \), respectively, and taking the first and the second partial derivatives of \( \varPi_{c} \) with respect to \( \tau \) gives \( \frac{{\partial \varPi_{c} }}{\partial \tau } = \frac{{NRT_{r} }}{{\tau^{2} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } - C^{\prime}\left( \tau \right) + \left( {\frac{Y}{N} - T_{p} } \right)^{\omega } \frac{{NC_{r} }}{{\tau^{2} }} \) and \( \frac{{\partial^{2} \varPi_{c} }}{{\partial \tau^{2} }} = \frac{{ - 2N\left( {RT_{r} + C_{r} } \right)}}{{\tau^{3} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } - C^{\prime\prime}\left( \tau \right) < 0 \), respectively. Apparently, \( \varPi_{c} \) is a concave function of \( N \) and \( \tau \). From the first-order conditions \( \partial \varPi_{c} /\partial N = 0 \) and \( \partial \varPi_{c} /\partial \tau = 0 \), the optimal solution of centralized decisions can be obtained.

1.4 A4: Proof of Proposition 1

From \( g\left( {N_{c}^{*} } \right) = \frac{{RT_{p} + C_{p} }}{{RT_{r} + C_{r} }}\tau_{c}^{*} \), \( g\left( {N_{c}^{*} } \right) \) obviously increases as \( \tau_{c}^{*} \) increases. Given \( g\left( {N_{c}^{*} } \right) = \frac{Y}{{N_{c}^{*} }}\lambda_{0} \left( {\frac{Y}{{N_{c}^{*} }} - T_{p} } \right) - M_{0} \left( {\frac{Y}{{N_{c}^{*} }} - T_{p} } \right) \), taking the first derivative of \( g\left( {N_{c}^{*} } \right) \) with respect to \( N_{c}^{*} \) gives \( g^{\prime}\left( {N_{c}^{*} } \right) = - \frac{{Y^{2} }}{{N_{c}^{*3} }}\lambda^{\prime}_{0} \left( {\frac{Y}{{N_{c}^{*} }} - T_{p} } \right) < 0 \). Obviously, \( g\left( {N_{c}^{*} } \right) \) decreases as \( N_{c}^{*} \) increases, and thus, \( N_{c}^{*} \) decreases as \( \tau_{c}^{*} \) increases.

1.5 A5: Proof of Proposition 2

Similar to the proofs of Lemmas 1 and 2, the Lagrangian function is applied to the profit function (13). Taking the first and the second partial derivatives of \( \varPi_{m} \) with respect to \( T_{i} \) gives \( \frac{{\partial \varPi_{m} }}{{\partial T_{i} }} = P - \frac{{PT_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } - \frac{{\left( {1 - \alpha } \right)C_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } + \xi \; \) and \( \frac{{\partial^{2} \varPi_{m} }}{{\partial T_{i}^{2} }} = - \frac{{\left[ {PT_{r} + \left( {1 - \alpha } \right)C_{r} } \right]\lambda_{0}^{'} \left( {T_{i} } \right)}}{\tau } < 0 \), respectively. Therefore, \( \varPi_{m} \) is concave in \( T_{i} \). The first-order condition \( \partial \varPi_{m} /\partial T_{i} = 0 \) is satisfied when \( \lambda_{0} \left( {T_{i} } \right) = \left[ {\left( {P + \xi } \right)\tau } \right]/\left[ {PT_{r} + \left( {1 - \alpha } \right)C_{r} } \right] \). Since \( \lambda_{0} (T_{i} ) \) strictly increases as \( T_{i} \) increases,\( T_{1csm}^{*} = \)\( T_{2csm}^{*} = \cdots = T_{Ncsm}^{*} = \frac{Y}{N} - T_{p} \) can be obtained. Plugging \( T_{1csm}^{*} = T_{2csm}^{*} = \cdots = T_{Ncsm}^{*} = \frac{Y}{N} - T_{p} \) into (13), \( \varPi_{m} = P\left[ {Y - NT_{p} - NT_{r} M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} \right] - \left( {1 - \alpha } \right)\left[ {C\left( \tau \right) + NC_{p} + C_{r} \sum\nolimits_{i = 1}^{N} {M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} } \right]{ + }W \) can be obtained. Taking the first and the second partial derivatives of \( \varPi_{m} \) with respect to \( N \) gives \( \frac{{\partial \varPi_{m} }}{\partial N}\;\; = - \left[ {PT_{p} + \left( {1 - \alpha } \right)C_{p} } \right] + \frac{1}{\tau }\left[ {PT_{r} + \left( {1 - \alpha } \right)C_{r} } \right]g\left( N \right) \) and \( \frac{{\partial^{2} \varPi_{m} }}{{\partial N^{2} }} = \frac{1}{\tau }\left[ {PT_{p} + \left( {1 - \alpha } \right)C_{p} } \right]g^{'} \left( N \right) \)\( = - \frac{{Y^{2} }}{{\tau N^{3} }}\left[ {PT_{p} + \left( {1 - \alpha } \right)C_{p} } \right]\lambda_{0}^{'} \left( {\frac{Y}{N} - T_{p} } \right) < 0 \), respectively, and taking the first and the second partial derivatives of \( \varPi_{m} \) with respect to \( \tau \) gives \( \frac{{\partial \varPi_{m} }}{\partial \tau } = \frac{{NPT_{r} }}{{\tau^{2} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } - \left( {1 - \alpha } \right)C^{'} \left( \tau \right) + \frac{{NC_{r} \left( {1 - \alpha } \right)}}{{\tau^{2} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } \) and \( \frac{{\partial^{2} \varPi_{c} }}{{\partial \tau^{2} }} = \frac{{ - 2N\left[ {PT_{r} + \left( {1 - \alpha } \right)C_{r} } \right]}}{{\tau^{3} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } - \left( {1 - \alpha } \right)C''\left( \tau \right) < 0 \), respectively. Apparently, \( \varPi_{m} \) is a concave function of \( N \) and \( \tau \). From the first-order conditions \( \partial \varPi_{m} /\partial N = 0 \) and \( \partial \varPi_{m} /\partial \tau = 0 \), the decisions of the manufacturer \( \left( {N_{csm}^{*} ,\tau_{csm}^{*} } \right) \) can be obtained by solving the system of equations \( g\left( {N_{csm}^{*} } \right) = \frac{{PT_{p} + \left( {1 - \alpha } \right)C_{p} }}{{PT_{r} + \left( {1 - \alpha } \right)C_{r} }} \cdot \tau_{csm}^{*} \) and \( L\left( {\tau_{csm}^{*} } \right){ = }\frac{{N_{csm}^{*} \left[ {PT_{r} + \left( {1 - \alpha } \right)C_{r} } \right]M\left( {\frac{Y}{{N_{csm}^{*} }} - T_{p} } \right)}}{1 - \alpha } \).

Similarly, \( T_{1cso}^{*} = T_{2cso}^{*} = \cdots = T_{Ncso}^{*} = \frac{Y}{N} - T_{p} \) can be obtained. Constraint (18) can be expressed as \( P\sum\nolimits_{i = 1}^{N} {\left[ {T_{i} - T_{r} M\left( {\tau ,T_{i} } \right)} \right]} - \left( {1 - \alpha } \right)\left[ {C\left( \tau \right) + NC_{p} + C_{r} \sum\nolimits_{i = 1}^{N} {M\left( {\tau ,T_{i} } \right)} } \right] + W \ge \pi \). Therefore, when the profit of the manufacturer is not less than its reservation profit, the profit of the operator will be maximized. Therefore, \( W + P\sum\nolimits_{i = 1}^{N} {\left[ {T_{i} - T_{r} M\left( {T_{i} ,\tau } \right)} \right]} = \pi + \left( {1 - \alpha } \right)\left[ {C\left( \tau \right) + NC_{p} + C_{r} \sum\nolimits_{i = 1}^{N} {M\left( {\tau ,T_{i} } \right)} } \right] \) can be obtained, meaning that the operator is most profitable. After plugging the above equation and \( T_{1cso}^{*} = T_{2cso}^{*} = \cdots = T_{Ncso}^{*} = \frac{Y}{N} - T_{p} \) into (16), the following can be obtained\( \varPi_{o} = \)\( R\left[ {Y - NT_{p} - NT_{r} M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} \right] \)\( - C\left( \tau \right) - N\left[ {C_{p} + C_{r} M\left( {\tau ,\frac{Y}{N} - T_{p} } \right)} \right] - \pi \).

Taking the first and the second partial derivatives of \( \varPi_{o} \) with respect to \( N \) gives \( \frac{{\partial \varPi_{o} }}{\partial N} = - \left[ {RT_{p} + C_{p} } \right] - \frac{1}{\tau }\left[ {RT_{r} + C_{r} } \right]g\left( N \right) \) and \( \frac{{\partial^{2} \varPi_{o} }}{{\partial N^{2} }} = \frac{1}{\tau }\left( {RT_{r} + C_{r} } \right)g^{\prime}\left( N \right) < 0 \), respectively, and taking the first and the second partial derivatives of \( \varPi_{o} \) with respect to \( \tau \) gives \( \frac{{\partial \varPi_{o} }}{\partial \tau } = \frac{{NRT_{r} }}{{\tau^{2} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } - C^{\prime}\left( \tau \right) + \left( {\frac{Y}{N} - T_{p} } \right)^{\omega } \;\;\frac{{NC_{r} }}{{\tau^{2} }} \) and \( \frac{{\partial^{2} \varPi_{o} }}{{\partial \tau^{2} }} = \frac{{ - 2N\left( {RT_{r} + C_{r} } \right)}}{{\tau^{3} }}\left( {\frac{Y}{N} - T_{p} } \right)^{\omega } - C^{\prime\prime}\left( \tau \right) < 0 \), respectively. Apparently, \( \varPi_{o} \) is a concave function of \( N \) and \( \tau \). From the first-order conditions \( \partial \varPi_{o} /\partial N = 0 \) and \( \partial \varPi_{o} /\partial \tau = 0 \), the optimal solutions of the operator can be obtained by solving the system of equations \( g\left( {N_{cso}^{*} } \right) = \frac{{RT_{p} + C_{p} }}{{RT_{r} + C_{r} }}\tau_{cso}^{*} \) and \( L\left( {\tau_{cso}^{*} } \right){ = }N_{cso}^{*} \left( {RT_{r} + C_{r} } \right)\left( {\frac{Y}{{N_{cso}^{*} }} - T_{p} } \right)^{\omega } \) with \( \left( {\tau_{csm}^{*} ,N_{csm}^{*} } \right) = \left( {\tau_{cso}^{*} ,N_{cso}^{*} } \right) = \left( {\tau_{c}^{*} ,N_{c}^{*} } \right) \), or equivalently, \( \frac{{PT_{p} + \left( {1 - \alpha } \right)C_{p} }}{{PT_{r} + \left( {1 - \alpha } \right)C_{r} }} = \frac{{RT_{p} + C_{p} }}{{RT_{r} + C_{r} }}{ = }\frac{{RT_{p} + C_{p} }}{{RT_{r} + C_{r} }} \) and \( \frac{{PT_{r} + \left( {1 - \alpha } \right)C_{r} }}{1 - \alpha } = RT_{r} + C_{r} = RT_{r} + C_{r} \), and the subsidy rate can be obtained after solving this system of equations. Plugging \( \left( {T_{ic}^{*} ,\tau_{c}^{*} ,N_{c}^{*} } \right) \), \( \left( {T_{im}^{*} ,\tau_{m}^{*} ,N_{m}^{*} } \right) \) and \( \left( {T_{io}^{*} ,\tau_{o}^{*} ,N_{o}^{*} } \right) \) into (10), (2) and (4), respectively, the fixed payment \( W \) can be obtained by solving this system of inequalities \( \varPi_{m}^{*} \left( {T_{ic}^{*} ,\tau_{c}^{*} ,N_{c}^{*} } \right) > \)\( \varPi_{m}^{*} \left( {T_{im}^{*} ,\tau_{m}^{*} ,N_{m}^{*} } \right) \) and \( \varPi_{o}^{*} \left( {T_{ic}^{*} ,\tau_{c}^{*} ,N_{c}^{*} } \right) > \varPi_{o}^{*} \left( {T_{io}^{*} ,\tau_{o}^{*} ,N_{o}^{*} } \right) \).

Propositions 3 and 7 can be proved in similar ways. Therefore, their proofs are omitted.

1.6 A6: Proof of Proposition 5

For analytical simplicity, the approximation \( \sum\nolimits_{i = 1}^{N} {i^{ - a} = \int_{0}^{N} {i^{ - a} di} } = \frac{{N^{1 - a} }}{1 - a} \) is adopted. This approximation works very well if \( 0 < a \le 0.6 \) and it also applicable if \( 0. 6< a \le 1 \) (Keachie and Fontana 1966; Camm et al. 1987; Tarakci et al. 2009). Although this approximation has a tendency to slightly overstate the total cost, it doesn’t affect our main analysis.

Let \( g_{l} \left( N \right) = \left( {\frac{Y}{{N^{1 - a} }} - \frac{{aT_{p} }}{1 - a}} \right)\lambda_{0} \left( {\frac{Y}{N} - \frac{{T_{p} N^{ - a} }}{1 - a}} \right) - N^{a} M_{0} \left( {\frac{Y}{N} - \frac{{T_{p} N^{ - a} }}{1 - a}} \right) \).

Solving the decision model in (29)–(30) and taking the first and the second partial derivatives of \( \varPi_{cl} \) with respect to \( T_{i} \) gives \( \frac{{\partial \varPi_{cl} }}{{\partial T_{i} }} = R - \frac{{RT_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } - \frac{{C_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } + \xi = 0 \) and \( \frac{{\partial^{2} \varPi_{cl} }}{{\partial T_{i}^{2} }} = \)\( - \frac{{\left( {RT_{r} + C_{r} } \right)\lambda_{0}^{'} \left( {T_{i} } \right)}}{\tau } < 0 \), respectively. Therefore, \( \varPi_{cl} \) is concave in \( T_{i} \). The first-order condition \( \partial \varPi_{cl} /\partial T_{i} = 0 \) is satisfied when \( \lambda_{0} \left( {T_{i} } \right) = [(R + \xi )\tau ]/(RT_{r} + C_{r} ) \). Since \( \lambda_{0} (T_{i} ) \) strictly increases as \( T_{i} \) increases, \( T_{1cl}^{*} = T_{2cl}^{*} = \cdots = T_{Ncl}^{*} = \frac{Y}{{N_{cl}^{*} }} - \frac{{N_{Lc}^{{* - a_{cl} }} }}{{1 - a_{cl} }}T_{p} \) can be obtained. Similarly, from the first-order conditions \( \partial \varPi_{cl} /\partial N = 0 \) and \( \partial \varPi_{cl} /\partial \tau = 0 \), the optimal solutions of the other two variables \( \left( {\tau_{cl}^{*} ,N_{cl}^{*} } \right) \) under centralized decisions can be obtained by solving the linear systems \( g_{l} \left( {N_{cl}^{*} } \right) = \frac{{RT_{p} + C_{p} }}{{RT_{r} + C_{r} }}\tau_{cl}^{*} \) and \( L\left( {\tau_{cl}^{*} } \right) = N_{cl}^{*} \left( {RT_{r} + C_{r} } \right)\left( {\frac{Y}{{N_{cl}^{*} }} - \frac{{T_{p} N_{cl}^{{* - a_{cl} }} }}{{1 - a_{cl} }}} \right)^{\omega } \).

Given \( L\left( {\tau_{cl}^{*} } \right) = \tau_{cl}^{*2} C^{'} \left( {\tau_{cl}^{*} } \right) = N_{cl}^{*} \left( {RT_{r} + C_{r} } \right)\left( {\frac{Y}{{N_{cl}^{*} }} - \frac{{T_{p} N_{cl}^{{* - a_{cl} }} }}{{1 - a_{cl} }}} \right)^{\omega } \), the first partial derivatives of \( L\left( {\tau_{cl}^{*} } \right) \) with respect to \( \tau_{cl}^{*} \) and \( a_{cl} \) are given by \( \partial L\left( {\tau_{cl}^{*} } \right)/\partial \tau_{cl}^{*} = 2\tau_{cl} C^{'} \left( {\tau_{cl} } \right) \ge 0 \) and \( \partial L\left( {\tau_{cl}^{*} } \right)/\partial a_{cl} = \frac{{T_{p} N_{cl}^{{*1 - a_{cl} }} \left( {RT_{r} + C_{r} } \right)\left[ {\left( {1 - a_{cl} } \right)\ln N_{cl}^{*} - 1} \right]}}{{\left( {1 - a_{cl} } \right)^{2} }}\lambda_{0} \left( {\frac{Y}{{N_{cl}^{*} }} - \frac{{T_{p} N_{cl}^{{* - a_{cl} }} }}{{1 - a_{cl} }}} \right) \), respectively. Therefore \( \partial L\left( {\tau_{cl}^{*} } \right)/\partial a_{cl} > 0 \) and \( \partial \tau_{cl}^{*} /\partial a_{cl} > 0 \) can be obtained when \( 0 \le a_{cl} \le 1 - \frac{1}{{\ln N_{cl}^{*} }} \); and \( \partial L\left( {\tau_{cl}^{*} } \right)/\partial a_{cl} < 0 \) and \( \partial \tau_{cl}^{*} /\partial a_{cl} < 0 \) can be obtained when \( 1 - \frac{1}{{\ln N_{cl}^{*} }} < a_{cl} \le 1 \).

Given \( T_{icl}^{*} = \frac{Y}{{N_{cl}^{*} }} - \frac{{N_{cl}^{{* - a_{cl} }} }}{{1 - a_{cl} }}T_{p} \), the partial derivative of \( T_{icl}^{*} \) with respect to \( a_{cl} \) is given by \( \partial T_{icl}^{*} /\partial a_{cl} = \frac{{N_{cl}^{{* - a_{cl} }} \left[ {1 - \left( {1 - a_{cl} } \right)\ln N_{cl}^{*} } \right]}}{{\left( {1 - a_{cl} } \right)^{2} }} \). Therefore \( \partial T_{icl}^{*} /\partial a_{cl} > 0 \) can be obtained when \( 0 \le a_{c} \le 1 - \frac{1}{{\ln N_{cl}^{*} }} \); and \( \partial T_{icl}^{*} /\partial a_{cl} < 0 \) can be obtained when \( 1 - \frac{1}{{\ln N_{cl}^{*} }} < a_{c} \le 1 \). Similarly, \( \partial N_{cl}^{*} /\partial a_{cl} > 0 \) can be obtained.

1.7 A7: Proof of Proposition 6

By the Envelope Theorem (Milgrom and Segal 2002; Benjaafar et al. 2019), \( \frac{{\partial \varPi_{cl}^{*} }}{\partial a}\left( a \right) = \frac{{\partial \varPi_{cl}^{*} }}{\partial a}\left( {T_{icl}^{*} ,N_{cl}^{*} ,\tau_{cl}^{*} ,a} \right) \) holds on any compact interval in (0, 1). Therefore,

$$ \begin{aligned} \frac{{\partial \varPi_{cl}^{*} }}{\partial a}\left( {T_{icl}^{*} ,N_{cl}^{*} ,\tau_{cl}^{*} ,a} \right) & = - C_{p} \frac{{ - \left( {1 - a} \right)N_{cl}^{*1 - a} \ln N_{cl}^{*} + N_{cl}^{*1 - a} }}{{\left( {1 - a} \right)^{2} }} - K^{\prime}\left( a \right) + \xi^{*} T_{p} \frac{{ - \left( {1 - a} \right)N_{cl}^{*1 - a} \ln N_{cl}^{*} + N_{cl}^{*1 - a} }}{{\left( {1 - a} \right)^{2} }} \\ & = \left( {\xi^{*} T_{p} - C_{p} } \right)\frac{{N_{cl}^{*1 - a} \left[ {1 - \left( {1 - a} \right)\ln N_{cl}^{*} } \right]}}{{\left( {1 - a} \right)^{2} }} - K^{\prime}\left( a \right) \\ \end{aligned} $$

is obtained. Since \( \xi^{*} = \left( {RT_{r} + C_{r} } \right)\lambda \left( {\tau^{*} ,T_{i}^{*} } \right) - R = \left( {RT_{r} + C_{r} } \right)\frac{1}{\tau } \cdot \omega \cdot \left( {\frac{Y}{N} - \frac{{N^{ - a} }}{1 - a}T_{p} } \right)^{\omega - 1} - R < - \frac{{C_{p} }}{{T_{p} }} \), thus, \( \partial \varPi_{cl}^{*} /\partial a \ge 0 \) holds when \( 0 \le a_{cl} \le 1 - \frac{1}{{\ln N_{cl}^{*} }} \) and \( K^{\prime}\left( {a_{cl} } \right) \le \hat{K^{\prime}}\left( {a_{cl} } \right) \). Furthermore, \( \partial \varPi_{cl}^{*} /\partial a < 0 \) holds when \( 1 - \frac{1}{{\ln N_{cl}^{*} }} < a_{cl} \le 1 \) or when \( 0 \le a_{cl} \le 1 - \frac{1}{{\ln N_{cl}^{*} }} \) and \( K^{\prime}\left( {a_{cl} } \right) > \hat{K^{\prime}}\left( {a_{cl} } \right) \).

1.8 A8: Proof of Lemma 4

Let \( g_{l} \left( {N,a} \right) = \left( {\frac{Y}{{N^{1 - a} }} - \frac{{aT_{p} }}{1 - a}} \right)\lambda_{0} \left( {\frac{Y}{N} - \frac{{T_{p} N^{ - a} }}{1 - a}} \right) - N^{a} M_{0} \left( {\frac{Y}{N} - \frac{{T_{p} N^{ - a} }}{1 - a}} \right) \), \( h_{cl} \left( {\tau ,N,a} \right) = N^{1 - a} \left[ {\left( {1 - a} \right)\ln N - 1} \right]\left[ {RT_{p} + C_{p} - \left( {RT_{r} + C_{r} } \right)T_{p} \lambda \left( {\tau ,\frac{Y}{N} - \frac{{T_{p} N^{ - a} }}{1 - a}} \right)} \right] - \left( {1 - a} \right)^{2} K^{'} \left( a \right) \), \( h_{ml} \left( {\tau ,N,a} \right) = N^{1 - a} \left[ {\left( {1 - a} \right)\ln N - 1} \right]\left[ {PT_{p} + C_{p} - \left( {PT_{r} + C_{r} } \right)T_{p} \lambda \left( {\tau ,\frac{Y}{N} - \frac{{T_{p} N^{ - a} }}{1 - a}} \right)} \right] - \left( {1 - a} \right)^{2} K^{\prime}\left( a \right) \), \( h_{ol} \left( {N,a} \right) = \left( {R - P} \right)T_{p} N^{1 - a} \left[ {\left( {1 - a} \right)\ln N - 1} \right]\left[ {1 - T_{r} \lambda \left( {\tau ,\frac{Y}{N} - \frac{{T_{p} N^{ - a} }}{1 - a}} \right)} \right] \) and \( S_{l} \left( {\tau ,N,a} \right) = \frac{{N\left( {R - P} \right)T_{r} }}{{\tau^{ 2} }}\left( {\frac{Y}{N} - \frac{{T_{p} N^{ - a} }}{1 - a}} \right)^{\omega } \).

  1. (i)

    Taking the first and the second partial derivatives of \( \varPi_{ml} \) with respect to \( T_{i} \) gives \( \frac{{\partial \varPi_{ml} }}{{\partial T_{i} }} = P - \frac{{PT_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } - \frac{{C_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } + \xi = 0 \) and \( \frac{{\partial^{2} \varPi_{m} }}{{\partial T_{i}^{2} }} = - \frac{{\left( {PT_{r} + C_{r} } \right)\lambda_{0}^{'} \left( {T_{i} } \right)}}{\tau } < 0 \), respectively. Therefore, \( \varPi_{ml} \) is concave in \( T_{i} \). The first-order condition \( \partial \varPi_{ml} /\partial T_{i} = 0 \) is satisfied when \( \lambda_{0} \left( {T_{i} } \right) = [(P + \xi )\tau ]/(PT_{r} + C_{r} ) \). Since \( \lambda_{0} (T_{i} ) \) strictly increases as \( T_{i} \) increases, \( T_{1ml}^{*} = T_{2ml}^{*} = \cdots = T_{Nml}^{*} = \frac{Y}{{N_{ml}^{*} }} - \frac{{N_{ml}^{{* - a_{ml}^{*} }} }}{{1 - a_{ml}^{*} }}T_{p} \) can be obtained. Similarly, from the first-order conditions \( \partial \varPi_{ml} /\partial N = 0 \), \( \partial \varPi_{ml} /\partial \tau = 0 \) and \( \partial \varPi_{ml} /\partial a = 0 \), the optimal solutions of the manufacturer can be obtained.

  2. (ii)

    These results can be proved in similar ways and, therefore, the proofs are omitted.

  3. (iii)

    From (35), \( \mathop {\varPi_{cl} }\limits_{{T_{i} ,N,\tau ,a}} = R\sum\nolimits_{i = 1}^{N} {\left[ {T_{i} - M\left( {\tau ,T_{i} } \right)T_{r} } \right]} - C\left( \tau \right) - \left( {\sum\nolimits_{i = 1}^{N} {C_{p} } i^{ - a} + C_{r} \sum\nolimits_{i = 1}^{N} {M\left( {\tau ,T_{i} } \right)} } \right) - K\left( a \right) + \xi \left[ {\sum\nolimits_{i = 1}^{N} {T_{p} i^{ - a} + } \sum\nolimits_{i = 1}^{N} {T_{i} } - Y} \right] \). Taking the first and the second partial derivatives of \( \varPi_{cl} \) with respect to \( T_{i} \) gives \( \frac{{\partial \varPi_{cl} }}{{\partial T_{i} }} = R - \frac{{RT_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } - \frac{{C_{r} \lambda_{0} \left( {T_{i} } \right)}}{\tau } + \xi \) and \( \frac{{\partial^{2} \varPi_{cl} }}{{\partial T_{i}^{2} }} = - \frac{{\left( {RT_{r} + C_{r} } \right)\lambda^{\prime}_{0} \left( {T_{i} } \right)}}{\tau } < 0 \). Apparently, \( \varPi_{cl} \) is a concave function of \( T_{i} \). The first-order condition \( \partial \varPi_{cl} /\partial T_{i} = 0 \) is satisfied when \( \lambda_{0} \left( {T_{i} } \right) = [(R + \xi )\tau ]/(RT_{r} + C_{r} ) \). Since \( \lambda_{0} (T_{i} ) \) strictly increases as \( T_{i} \) increases, \( T_{1cl} = T_{2cl} = \cdots = T_{Ncl} = \frac{Y}{N} - \frac{{N^{ - a} }}{1 - a}T_{p} \) is obtained. After plugging \( T_{1cl} = T_{2cl} = \cdots = T_{Ncl} = \frac{Y}{N} - \frac{{N^{ - a} }}{1 - a}T_{p} \) into the profit function, from the first-order conditions \( \partial \varPi_{cl} /\partial N = 0 \), \( \partial \varPi_{cl} /\partial \tau = 0 \) and \( \partial \varPi_{cl} /\partial a = 0 \), the optimal solutions of the centralized decisions with learning behavior can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZZ., He, N., Qin, X. et al. Optimizing production and maintenance for the service-oriented manufacturing supply chain. Ann Oper Res 316, 33–58 (2022). https://doi.org/10.1007/s10479-020-03758-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03758-7

Keywords

Navigation