Abstract
Geospatial Business Intelligence (Geospatial BI) is a system that combines multidimensional analysis and cartographic visualization. It plays an important role in decision making process for enterprises. Adopting such a comprehensive solution may result in the great investment decision for them, so great deal of attention should be given in the selection of the optimal system. As there are many impacting factors in the selection of Geospatial BI system, the same process is considered as a complex multi-criteria decision making problem. In this paper, we explore the application of an integrated methodology for the evaluation of various Geospatial BI alternatives. The proposed methodology integrates the three well-known decision-making techniques, namely Modified Delphi, fuzzy analytic hierarchical process (fuzzy-AHP), and preference ranking organization method for enrichment evaluations (PROMETHEE). In this respect, the modified Delphi is used to select the most impacting factors by a few decision-makers. The fuzzy-AHP is employed to analyze the structure of the problem and to obtain the weights of the qualitative and quantitative criteria, by incorporating the uncertainty values. Then, the PROMETHEE technique is used for optimal ranking of the alternative system choices. A step-by-step, numerical study is illustrated by using the proposed methodology on the decision making problem of a company that is faced to five Geospatial BI solutions. The results demonstrate that the proposed methodology can successfully accomplish our goal of this study.
Similar content being viewed by others
References
Angelaccio M, Buttarazzi B, Basili A, Liguori W (2012) Using geo-business intelligence to improve quality of life. IEEE First AESS European conference on satellite telecommunications (ESTEL). doi:10.1109/estel.2012.6400196
Azadeh A, Shirkouhi SN, Rezaie K (2009) A robust decision-making methodology for evaluation and selection of simulation software package. Int J Adv Manuf Technol 47(1–4):381–393
Badard T, Dubé E (2009) Enabling geospatial business intelligence. The Special issue on Business Intelligence for the OSBR, p 25
Behzadian M, Kazemzadeh RB, Albadvi A, Aghdasi M (2010) PROMETHEE: a comprehensive literature review on methodologies and applications. Eur J Oper Res 200(1):198–215
Boutkhoum O, Hanine M, Agouti T, Tikniouine A (2015) An improved hybrid multi-criteria/multidimensional model for strategic industrial location selection: casablanca industrial zones as a case study. SpringerPlus. doi:10.1186/s40064-015-1404-x
Bozbura F, Beskese A, Kahraman C (2007) Prioritization of human capital measurement indicators using fuzzy AHP. Expert Syst Appl 32(4):1100–1112. doi:10.1016/j.eswa.2006.02.006
Brans JP, Mareschal B (1994) The PROMCALC and GAIA decision support system for multicriteria decision aid. Decis Support Syst 12(4–5):297–310. doi:10.1016/0167-9236(94)90048-5
Brans JP, Mareschal B (2004) Promethee methods, international series in operations research and management science, multiple criteria decision analysis: state of the art surveys. Springer, Berlin
Bueno S, Salmeron JL (2008) Fuzzy modeling enterprise resource planning tool selection. Comput Stand Interfaces 30(3):137–147. doi:10.1016/j.csi.2007.08.001
Büyüközkan G, Feyzıoglu O (2004) A fuzzy-logic-based decision-making approach for new product development. Int J Prod Econ 90(1):27–45. doi:10.1016/s0925-5273(02)00330-4
Büyüközkan G, Ruan D (2008) Evaluation of software development projects using a fuzzy multi-criteria decision approach. Math Comput Simul 77(5–6):464–475. doi:10.1016/j.matcom.2007.11.015
Büyüközkan G, Kahraman C, Ruan D (2004) A fuzzy multi-criteria decision approach for software development strategy selection. Int J Gen Syst 33(2–3):259–280. doi:10.1080/03081070310001633581
Chang DY (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95(3):649–655. doi:10.1016/0377-2217(95)00300-2
Chang C-W, Wu C-R, Chen H-C (2008) Using expert technology to select unstable slicing machine to control wafer slicing quality via fuzzy AHP. Expert Syst Appl 34(3):2210–2220. doi:10.1016/j.eswa.2007.02.042
Chang CW, Wu CR, Lin HL (2009) Applying fuzzy hierarchy multiple attributes to construct an expert decision making process. Expert Syst Appl 36(4):7363–7368. doi:10.1016/j.eswa.2008.09.026
Cochran JK, Chen H-N (2005) Fuzzy multi-criteria selection of object-oriented simulation software for production system analysis. Comput Oper Res 32(1):153–168. doi:10.1016/s0305-0548(03)00209-0
Dağdeviren M (2008) Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. J Intell Manuf 19(4):397–406. doi:10.1007/s10845-008-0091-7
Durán O (2011) Computer-aided maintenance management systems selection based on a fuzzy AHP approach. Adv Eng Softw 42(10):821–829. doi:10.1016/j.advengsoft.2011.05.023
Durán O, Aguilo J (2008) Computer-aided machine-tool selection based on a fuzzy-AHP approach. Expert Syst Appl 34(3):1787–1794. doi:10.1016/j.eswa.2007.01.046
Efe B (2016) An integrated fuzzy multi criteria group decision making approach for ERP system selection. Appl Soft Comput 38:106–117. doi:10.1016/j.asoc.2015.09.037
Ekmekçioglu M, Can Kutlu A, Kahraman C (2011) A fuzzy multi-criteria SWOT analysis: an application to nuclear power plant site selection. Int J Comput Intell Syst 4(4):583–595
Eldrandaly K, Naguib S (2013) A knowledge-based system for GIS software selection. Int Arab J Inf Technol 10(2):152–159
Espinilla M, Halouani N, Chabchoub H (2014) Pure linguistic PROMETHEE I and II methods for heterogeneous MCGDM problems. Int J Comput Intell Syst 8(2):250–264
Franklin C, Hane P (1992) An introduction to GIS: linking maps to databases. Database 15(1992):17–22
Ghazanfari M, Jafari M, Rouhani S (2011) A tool to evaluate the business intelligence of enterprise systems. Sci Iran 18(6):1579–1590. doi:10.1016/j.scient.2011.11.011
Gumus AT (2009) Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology. Expert Syst Appl 36(2):4067–4074. doi:10.1016/j.eswa.2008.03.013
Gürbüz T, Alptekin SE, Işıklar Alptekin G (2012) A hybrid MCDM methodology for ERP selection problem with interacting criteria. Decis Support Syst 54(1):206–214. doi:10.1016/j.dss.2012.05.006
Hanine M, Boutkhoum O, Tikniouine A, Agouti T (2016a) Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus. doi:10.1186/s40064-016-2131-7
Hanine M, Boutkhoum O, Tikniouine A, Agouti T (2016b) Application of an integrated multi-criteria decision making AHP-TOPSIS methodology for ETL software selection. SpringerPlus. doi:10.1186/s40064-016-1888-z
Ilangkumaran M, Kumanan S (2009) Selection of maintenance policy for textile industry using hybrid multi-criteria decision making approach. J Manuf Technol Manag 20(7):1009–1022. doi:10.1108/17410380910984258
Khajouei H, Kazemi M, Moosavirad SH (2016) Ranking information security controls by using fuzzy analytic hierarchy process. Inf Syst E Bus Manag. doi:10.1007/s10257-016-0306-y
Kilic HS, Zaim S, Delen D (2014) Development of a hybrid methodology for ERP system selection: the case of Turkish Airlines. Decis Support Syst 66:82–92. doi:10.1016/j.dss.2014.06.011
Kilic HS, Zaim S, Delen D (2015) Selecting ‘the best’ ERP system for SMEs using a combination of ANP and PROMETHEE methods. Expert Syst Appl 42(5):2343–2352. doi:10.1016/j.eswa.2014.10.034
Kwon O, Kim KY, Lee KC (2007) MM-DSS: integrating multimedia and decision-making knowledge in decision support systems. Expert Syst Appl 32(2):441–457. doi:10.1016/j.eswa.2005.12.009
Kwong CK, Mu LF, Tang JF, Luo XG (2010) Optimization of software components selection for component-based software system development. Comput Ind Eng 58(4):618–624. doi:10.1016/j.cie.2010.01.003
Li S-T, Shue L-Y, Lee S-F (2008) Business intelligence approach to supporting strategy-making of ISP service management. Expert Syst Appl 35(3):739–754. doi:10.1016/j.eswa.2007.07.049
Lin H-Y, Hsu P-Y, Sheen G-J (2007) A fuzzy-based decision-making procedure for data warehouse system selection. Expert Syst Appl 32(3):939–953. doi:10.1016/j.eswa.2006.01.031
Macharis C, Springael J, De Brucker K, Verbeke A (2004) PROMETHEE and AHP: the design of operational synergies in multicriteria analysis. Eur J Oper Res 153(2):307–317
Manh Nguyen T, Min Tjoa A, Nemec J, Windisch M (2007) An approach towards an event-fed solution for slowly changing dimensions in data warehouses with a detailed case study. Data Knowl Eng 63(1):26–43
McHugh R, Roche S, Bédard Y (2009) Towards a SOLAP-based public participation GIS. J Environ Manag 90(6):2041–2054. doi:10.1016/j.jenvman.2008.01.020
Minetola P, Iuliano L, Calignano F (2015) A customer oriented methodology for reverse engineering software selection in the computer aided inspection scenario. Comput Ind 67:54–71. doi:10.1016/j.compind.2014.11.002
Mousavi SM, Tavakkoli-Moghaddam R, Heydar M, Ebrahimnejad S (2012) Multi-criteria decision making for plant location selection: an integrated Delphi–AHP–PROMETHEE methodology. Arab J Sci Eng 38(5):1255–1268
Mulebeke JAW, Zheng L (2006) Analytical network process for software selection in product development: a case study. J Eng Technol Manag 23(4):337–352. doi:10.1016/j.jengtecman.2006.08.004
Noori B, Hossein Salimi M (2005) A decision support system for business to business marketing. J Bus Ind Market 20(4/5):226–236. doi:10.1108/08858620510603909
Ozgen A, Tuzkaya G, Tuzkaya UR, Ozgen D (2011) A multi-criteria decision making approach for machine tool selection problem in a fuzzy environment. Int J Comput Intell Syst 4(4):431
Perçin S, Kahraman C (2010) An integrated fuzzy multi-criteria decision-making approach for six sigma project. Int J Comput Intell Syst 3(5):610–621. doi:10.1080/18756891.2010.9727727
Rivest S, Bédard Y, Proulx MJ, Nadeau M, Hubert F, Pastor J (2005) SOLAP technology: merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. ISPRS J Photogramm Remote Sens 60(1):17–33. doi:10.1016/j.isprsjprs.2005.10.002
Rouhani S, Ghazanfari M, Jafari M (2012) Evaluation model of business intelligence for enterprise systems using fuzzy TOPSIS. Expert Syst Appl 39(3):3764–3771. doi:10.1016/j.eswa.2011.09.074
Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, NewYork
Shyur H-J (2006) COTS evaluation using modified TOPSIS and ANP. Appl Math Comput 177(1):251–259. doi:10.1016/j.amc.2005.11.006
Sung WC (2001) Application of Delphi method, a qualitative and quantitative analysis, to the healthcare management. J Healthc Manag 2(2):11–19
Tolga E, Demircan ML, Kahraman C (2005) Operating system selection using fuzzy replacement analysis and analytic hierarchy process. Int J Prod Econ 97(1):89–117. doi:10.1016/j.ijpe.2004.07.001
Tsai H-Y, Chang C-W, Lin H-L (2010) Fuzzy hierarchy sensitive with Delphi method to evaluate hospital organization performance. Expert Syst Appl 37(8):5533–5541. doi:10.1016/j.eswa.2010.02.099
Tuzkaya UR (2009) Evaluating the environmental effects of transportation modes using an integrated methodology and an application. Int J Environ Sci Technol 6(2):277–290. doi:10.1007/bf03327632
Wickramasuriya R, Ma J, Berryman M, Perez P (2013) Using Geospatial Business Intelligence to support regional infrastructure governance. Knowl Based Syst 53:80–89. doi:10.1016/j.knosys.2013.08.024
Wu W-W (2008) Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Syst Appl 35(3):828–835. doi:10.1016/j.eswa.2007.07.025
Yazgan HR, Boran S, Goztepe K (2009) An ERP software selection process with using artificial neural network based on analytic network process approach. Expert Syst Appl 36(5):9214–9222
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. doi:10.1016/s0019-9958(65)90241-x
Zahedi F (1986) the analytic hierarchy process-a survey of the method and its applications. Interfaces 16(4):96–108. doi:10.1287/inte.16.4.96
Zaidan AA, Zaidan BB, Al-Haiqi A, Kiah MLM, Hussain M, Abdulnabi M (2015) Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J Biomed Inf 53:390–404. doi:10.1016/j.jbi.2014.11.012
Acknowledgments
The authors wish to acknowledge the contributions of other members of the department of computer science of Faculty of Science Semlalia of Marrakech, Cadi Ayyad University for their helpful discussions and the availability of all resources that have helped make this work in the best conditions. They wish also to thank Mr. Redouane Boulguid for pointing out many English corrections that lead to the improvement of the paper. They would also like to thank the reviewers and Editor for their remarks and suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hanine, M., Boutkhoum, O., Agouti, T. et al. A new integrated methodology using modified Delphi-fuzzy AHP-PROMETHEE for Geospatial Business Intelligence selection. Inf Syst E-Bus Manage 15, 897–925 (2017). https://doi.org/10.1007/s10257-016-0334-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10257-016-0334-7