iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10009-011-0193-y
An interval-based SAT modulo ODE solver for model checking nonlinear hybrid systems | International Journal on Software Tools for Technology Transfer Skip to main content
Log in

An interval-based SAT modulo ODE solver for model checking nonlinear hybrid systems

  • VSTTE 2009-2010
  • Published:
International Journal on Software Tools for Technology Transfer Aims and scope Submit manuscript

Abstract

This paper presents a bounded model checking tool called \({\texttt{Hydlogic}}\) for hybrid systems. It translates a reachability problem of a nonlinear hybrid system into a predicate logic formula involving arithmetic constraints and checks the satisfiability of the formula based on a satisfiability modulo theories method. We tightly integrate (i) an incremental SAT solver to enumerate the possible sets of constraints and (ii) an interval-based solver for hybrid constraint systems (HCSs) to solve the constraints described in the formulas. The HCS solver verifies the occurrence of a discrete change by using a set of boxes to enclose continuous states that may cause the discrete change. We utilize the existence property of a unique solution in the boxes computed by the HCS solver as (i) a proof of the reachability of a model and (ii) a guide in the over-approximation refinement procedure. Our \({\texttt{Hydlogic}}\) implementation successfully handled several examples including those with nonlinear constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Audemard G., Bozzano M., Cimatti A., Sebastiani R.: Verifying industrial hybrid systems with MathSAT. Electron. Notes Theor. Comput. Sci. 119(2), 17–32 (2005)

    Article  Google Scholar 

  2. Bu, L., Zhao, J., Li, X.: Path-oriented reachability verification of a class of nonlinear hybrid automata using convex programming. In: Proceedings of VMCAI’10. LNCS, vol. 5944, pp. 78–94 (2010)

  3. Cavada, R., Cimatti A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shyamasundar, R.K.: Computing predicate abstractions by integrating BDDs and SMT solvers. In: Proceedings of FMCAD’07, pages 69–76 (2007)

  4. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification of hybrid systems based on counterexample-guided abstraction refinement. In: Proceedings of TACAS’03, LNCS, vol. 2619, pp. 192–207 (2003)

  5. Collins, P., Goldsztejn, A.: The reach-and-evolve algorithm for reachability analysis of nonlinear dynamical systems. In: Proceedings of the 2nd Workshop on Reachability Problems, volume 223 of Electronic Notes in Theoretical Computer Science, pp. 87–102 (2008)

  6. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Proceedings of HSCC’10, pp. 11–19 (2010)

  7. de Moura, L.M., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over infinite domains. In: Proceedings of the 18th International Conference on Automated Deduction. LNCS, vol. 2392, pp. 438–455 (2002)

  8. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach to hybrid systems. In: Proceedings of ATVA’08. LNCS, vol. 5311, pp. 171–185 (2008)

  9. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Proceedings of HSCC’04. LNCS, vol. 2993, pp. 326–341 (2004)

  10. Fränzle M., Herde C., Teige T., Ratschan S., Schubert T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. J. Satisf. Boolean Model. Comput. 1, 209–236 (2007)

    Google Scholar 

  11. Frehse G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Proceedings of CAV’04. LNCS, vol. 3114, pp. 175–188 (2004)

  13. Goel, A., Grundy, J.: Decision Procedure Toolkit (version 1.2). http://dpt.sourceforge.net/ (2008)

  14. Granvilliers, L., Sorin, V.: Elisa (version 1.0.4). http://sourceforge.net/projects/elisa/ (2005)

  15. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Proceedings of CAV’08. LNCS, vol. 5123, pp. 190–203 (2008)

  16. Henzinger, T.A.: The theory of hybrid automata. Verification of Digital and Hybrid Systems, NATO ASI Series F: Computer and Systems Sciences, vol. 170, pp. 265–292 (2000)

  17. Henzinger T.A., Ho P.-H., Wong-Toi H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom. Control 43, 540–554 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hickey, T.J., Wittenberg, D.K.: Rigorous modeling of hybrid systems using interval arithmetic constraints. In: Proceedings of HSCC’04. LNCS, vol. 2993, pp. 402–416 (2004)

  19. Ishii, D., Ueda, K., Hosobe, H., Goldsztejn, A.: Interval-based solving of hybrid constraint systems. In: Proceedings of the 3rd IFAC Conference on Analysis and Design of Hybrid Systems (ADHS’09), pp. 144–149 (2009)

  20. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of ISORC’08, pp. 363–369 (2008)

  21. Makhlouf, I.B., Kowalewski, S.: An evaluation of two recent reachability analysis tools for hybrid systems. In: Proceedings of ADHS’06, pp. 377–382 (2006)

  22. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM (2009)

  23. Nedialkov, N.S.: VNODE-LP: a validated solver for initial value problems in ordinary differential equations. Technical Report TR CAS-06-06-NN, McMaster University (2006)

  24. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method for computing an over-approximation for the reachable space of uncertain nonlinear systems. IEEE Trans. Autom. Control 54, 2352–2364 (2009)

    Google Scholar 

  25. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst. 6(1), article 8 (2007)

    Google Scholar 

  26. Sankaranarayanan, S., Ivancic, F., Dang, T.: Symbolic model checking of hybrid systems using template polyhedra. In: Proceedings of TACAS’08. LNCS, vol. 4963, pp. 188–202 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, D., Ueda, K. & Hosobe, H. An interval-based SAT modulo ODE solver for model checking nonlinear hybrid systems. Int J Softw Tools Technol Transfer 13, 449–461 (2011). https://doi.org/10.1007/s10009-011-0193-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10009-011-0193-y

Keywords

Navigation