iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00779-019-01353-7
Drone flight planning for safe urban operations | Personal and Ubiquitous Computing Skip to main content
Log in

Drone flight planning for safe urban operations

UTM requirements and tools

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

This paper describes the requirements of a flight planning tool for safe urban operations, which may be used to design operations considering flight constraints and limitations. This system is designed to work in coordination with an unmanned traffic management system in charge of distributing available very low level airspace resources among different operations and authorizing them, and of monitoring compliance of actual flights with flight authorizations. Representative examples of flight planning are described, as calculated by a prototype flight planning tool following this requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. SESAR (2016) European Drones Outlook Study unlocking the value for Europe

  2. Hassanalian M, Abdelkefi A (2017) . Prog Aerosp Sci 91:99. https://doi.org/10.1016/j.paerosci.2017.04.003

    Article  Google Scholar 

  3. Amazon prime air. https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011. Accessed: 2019-04-18

  4. Nneji V, Stimpson A, Cummings M, Goodrich K (2017) In: 17th AIAA Aviation Technology, Integration and Operations Conference. https://doi.org/10.2514/6.2017-3085

  5. Introduction to unmanned aircraft systems. 2nd Edition

  6. Besada JA, Bergesio L, Campana I, Vaquero-Melchor D, López-Araquistain J, Bernardos AM, Casar JR (2018) Sensors 18(4). https://doi.org/10.3390/s18041170

  7. Richman B, Bauer M, Michini B, Poole AJ Unmanned aerial vehicle rooftop inspection system (2017). U.S. Patent No. 9,609,288. U.S. Patent and Trademark Office

  8. Barkham R, Bokhari S, Saiz A (2018) Urban big data: city management and real estate markets.

  9. de Melo RRS, Costa DB, Álvares JS, Irizarry J (2017) . Safety Sci 98:174. https://doi.org/10.1016/j.ssci.2017.06.008. http://www.sciencedirect.com/science/article/pii/S0925753516303861

    Article  Google Scholar 

  10. Rossi M, Brunelli D, Adami A, Lorenzelli L, Menna F, Remondino F (2014) In: SENSORS IEEE 2014. IEEE, pp 1431–1434

  11. Rau J, Jhan J, Lob C, Linb Y (2011) . Arch Photogramm Remote Sens Spatial Inform Sci 38(1):C22

    Google Scholar 

  12. Niethammer U, Rothmund S, Schwaderer U, Zeman J, Joswig M (2011) International archives of the photogrammetry. Remote Sens Spatial Inf Sci 38(1):C22

    Google Scholar 

  13. Carvajal F, Agüera F, Pérez M (2011) International archives of the photogrammetry. Remote Sens Spatial Inf Sci 38(1):C22

    Google Scholar 

  14. Branco LHC, Segantine PCL (2015) In: Journal of Physics: Conference Series. IOP Publishing, vol 633, pp 012122

  15. Máthé K, Buṡoniu L (2015) . Sensors 15(7):14887

    Article  Google Scholar 

  16. González-Jorge H, Martínez-Sánchez J, Bueno M et al (2017) . Drones 1(1):2

    Article  Google Scholar 

  17. Airbus. Blueprint for the sky (2018). https://www.airbusutm.com. Accessed: 2019-04-18

  18. FAA-NASA UTM. https://utm.arc.nasa.gov/index.shtml. Accessed: 2019-04-18

  19. SESAR U-Space Blueprint. https://www.sesarju.eu/u-space-blueprint. Accessed: 2019-04-18

  20. Global UTM Association. https://gutma.org. Accessed: 2019-04-18

  21. Joint Authorities for rulemaking on unmanned systems. http://jarus-rpas.org. Accessed: 2019-04-18

  22. JARUS guidelines on Specific Operations Risk Assessment (SORA). Ed. 2.0 (2019). http://jarus-rpas.org/content/jar-doc-06-sora-package. Accessed: 2019-04-18

  23. Parrot. https://www.parrot.com. Accessed: 2019-04-18

  24. DJI. https://www.dji.com. Accessed: 2019-04-18

  25. Atoev S, Kwon KR, Lee SH, Moon KS (2017) In: 2017 International Conference on Information Science and Communications Technologies (ICISCT). IEEE, pp 1–3

  26. DroneDeploy. https://www.dronedeploy.com. Accessed: 2019-04-18

  27. DroneUP. https://www.droneup.com. Accessed: 2019-04-18

  28. APM Planner 2. http://ardupilot.org/planner2. Accessed: 2019-04-18

  29. Ruscio DD, Malavolta I, Pelliccione P, Tivoli M (2016) In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems. ACM, pp 45–55

  30. Frontera G, Besada JA, Bernardos AM, Casado E, López-Leonés J (2014) . IEEE Trans Intell Transp Syst 15(4):1550

    Article  Google Scholar 

  31. Frontera G (2016) Applications of formal languages to management of manned and unmanned aircraft. Ph.d. thesis, Universidad Politécnica de Madrid, Madrid. https://doi.org/10.20868/UPM.thesis.40622. http://oa.upm.es/40622/

  32. Frontera G, Campana I, Bernardos AM, Besada JA (2019) IEEE Transactions on Aerospace and Electronic Systems. https://doi.org/10.1109/TAES.2019.2907396. Early Access

  33. Pastor E, Santamaria E, Royo P, Lopez J, Barrado C (2010) In: 2010 IEEE Aerospace Conference. IEEE, pp 1–20

  34. Bozhinoski D, Di Ruscio D, Malavolta I, Pelliccione P, Tivoli M (2015) In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, pp 801–806

  35. Airmap. https://www.airmap.com/. Accessed: 2019-04-18

  36. Unifly. https://www.unifly.aero/. Accessed: 2019-04-18

  37. U-Space. SESAR. https://www.sesarju.eu/U-space. Accessed: 2019-04-18

  38. Frontera G, Campana I, Bernardos AM, Besada JA (2019) IEEE Transactions on Aerospace and Electronic Systems, pp 1–1. https://doi.org/10.1109/TAES.2019.2907396

  39. Fruh C, Zakhor A (2003) . IEEE Comput Graph Appl 23(6):52

    Article  Google Scholar 

  40. Instituto Geográfico Nacional. http://www.ign.es/web/ign/portal. Accessed: 2019-04-18

  41. Stevenson A (2015) Oxford Dictionary of English. OUP, Oxford

  42. Butler H, Daly M, Doyle A, Gillies S, Schaub T, Schaub T (2016) The GeoJSON Format. RFC 7946. https://doi.org/10.17487/RFC7946, https://rfc-editor.org/rfc/rfc7946.txt

  43. Open Weather Map. https://openweathermap.org/. Accessed: 2019-04-18

Download references

Funding

This work was supported by UPM Project “Tecnologías Avanzadas para la Monitorización y Gestión Remota del Tráfico Aéreo de Vehículos Pilotados y no Pilotados” (RP1509550C02), and by the Spanish Ministry of Economy and Competitiveness, Grant TEC2017-88048-C2-1-R

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Besada.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besada, J., Campaña, I., Bergesio, L. et al. Drone flight planning for safe urban operations. Pers Ubiquit Comput 26, 1085–1104 (2022). https://doi.org/10.1007/s00779-019-01353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-019-01353-7

Keywords

Navigation