Abstract
A new matrix, scaled odd tail, SOT, is introduced. This new matrix is used to derive real and complex FFT algorithms for lengths n = 2k. A compromise is reached between Fourier transform and polynomial transform methods for computing the action of cyclic convolutions. Both of these methods lead to arithmetic operation counts that are better than previously published results. A minor improvement is also demonstrated that enables us to compute the actions of Fermat prime order FFTs in fewer additions than previously available algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bergland, G. D., Dolan, M. T.: In: IEEE Acoust., Speech, Signal Processing Society, Programs for Digital Signal Processing. New York: IEEE Press 1979.
G. Bi Y. Zeng (2004) Transforms and fast algorithms for signal analysis and representations Birkhäuser Boston Occurrence Handle1095.94004
L. Davis (1979) Circulant matrices Wiley New York Occurrence Handle0418.15017
P. Duhamel H. Holliman (1984) ArticleTitleSplit-radix FFT algorithm Electr. Lett. 20 14–16 Occurrence Handle10.1049/el:19840012
P. Duhamel M. Vetterli (1990) ArticleTitleFast Fourier transforms: a tutorial review and a state of the art Signal Process. 19 259–299 Occurrence Handle0704.65106 Occurrence Handle10.1016/0165-1684(90)90158-U Occurrence Handle1048328
M. Frigo S. G. Johnson (2005) ArticleTitleThe design and implementation of FFTW3 Proc. IEEE 93 IssueID2 216–231 Occurrence Handle10.1109/JPROC.2004.840301
N. C. Hu O. K. Ersoy (1991) ArticleTitleFast computation of real discrete Fourier transform for any number of data points IEEE Trans. Circuits Sys. 38 IssueID11 1280–1292 Occurrence Handle0751.65073 Occurrence Handle10.1109/31.99157
Johnson, H. W., Burrus, C. S.: The design of optimal DFT algorithms using dynamic programming. IEEE Trans. Acoust. Speech Signal Process. ASSP-31, 378–387 (1983).
Johnson, S. G.: private communication.
C. Lu J. Cooley R. Tolimieri (1993) ArticleTitleFFT algorithms for prime transform sizes and their implementation on VAX, IBM3090VF, and IBM RS/6000 IEEE Trans. Acoust. Speech Signal Process. 41 638–648 Occurrence Handle0773.65095
H. Murakami (1994) ArticleTitleReal-valued decimation-in-time and decimation-in-frequency algorithms IEEE Trans. Circuits Sys. 41 IssueID12 808–816 Occurrence Handle0840.65144 Occurrence Handle10.1109/82.338622
H. J. Nussbaumer (1982) Fast Fourier transform and convolution algorithms, 2nd corrected and updated edition Springer Berlin Heidelberg
C. M. Rader (1968) ArticleTitleDiscrete Fourier transforms when the number of data samples is prime Proc. IEEE 56 1107–1108 Occurrence Handle10.1109/PROC.1968.6477
F. Scheid (1989) Schaum's outline series of theory and problems of numerical analysis EditionNumber2 McGraw-Hill New York 184–197
I. Selesnick C. Burrus (1996) ArticleTitleAutomatic generation of prime length FFT programs IEEE Trans. Acoust. Speech Signal Process. 44 14–24
Sorenson, H., Jones, D., Heideman, M., Burrus, C.: Real-valued fast Fourier transform algorithms. IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 849–863 (1987).
Swarztrauber, P.: FFTPACK, version 4, April 1985. http://gams.nist.gov/serve.cgi/package/FFTPACK/, 2006.
C. Temperton (1983) ArticleTitleFast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350 Occurrence Handle0513.65094 Occurrence Handle10.1016/0021-9991(83)90034-7 Occurrence Handle725599
C. Temperton (1988) ArticleTitleA new set of minimum-add small-n rotated DFT modules J. Comput. Phys. 75 190–198 Occurrence Handle0637.65146 Occurrence Handle10.1016/0021-9991(88)90106-4 Occurrence Handle940812
R. Tolimieri M. An C. Lu (1997) Algorithms for discrete Fourier transform and convolution EditionNumber2 Springer New York Occurrence Handle0894.65076
Van Buskirk, J., Lundy, T.: The new FFT web page: http://www.cuttlefisharts.com/newfft/, 2004.
I. Verbauwhede (2002) What makes a programmable DSP processor special? V. Oklobdzija (Eds) The Computer Engineering Handbook CRC Press Boca Raton, FL
M. Vetterli P. Duhamel (1989) ArticleTitleSplit-radix algorithms for length-pm DFT's IEEE Trans. Acoust. Speech Signal Process. 37 57–64 Occurrence Handle0669.65096 Occurrence Handle10.1109/29.17500 Occurrence Handle973039
M. Vetterli H. J. Nussbaumer (1984) ArticleTitleSimple FFT and DCT algorithms with reduced number of operations Signal Process. 6 267–278 Occurrence Handle10.1016/0165-1684(84)90059-8 Occurrence Handle760430
J. S. Walker (1988) Fourier analysis Oxford University Press New York Occurrence Handle0669.42001
R. Yavne (1968) ArticleTitleAn economical method for calculating the discrete Fourier transform AFIPS Proc. 33 115–125
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lundy, T., Van Buskirk, J. A new matrix approach to real FFTs and convolutions of length 2k . Computing 80, 23–45 (2007). https://doi.org/10.1007/s00607-007-0222-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-007-0222-6