iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s005000100150
A dynamically-constructed fuzzy neural controller for direct model reference adaptive control of multi-input-multi-output nonlinear processes | Soft Computing Skip to main content
Log in

A dynamically-constructed fuzzy neural controller for direct model reference adaptive control of multi-input-multi-output nonlinear processes

  • Original paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

 Conventional industrial control systems are in majority based on the single-input-single-output design principle with linearized models of the processes. However, most industrial processes are nonlinear and multivariable with strong mutual interactions between process variables that often results in large robustness margins, and in some cases, extremely poor performance of the controller. To improve control accuracy and robustness to disturbances and noise, new design strategies are necessary to overcome problems caused by nonlinearity and mutual interactions. We propose to use a dynamically-constructed, feedback fuzzy neural controller (DCF-FNC) from the input–output data of the process and a reference model, for direct model reference adaptive control (MRAC) to deal with such problems. The effectiveness of our approach is demonstrated by simulation results on a real-world example of cold mill thickness control and is compared with the performances of the conventional PID controller and the cascade correlation neural network (CCN). Exploiting the advantage of intelligent adaptive control, both the CCN and our DCF-FNC significantly increases the control precision and robustness, compared to the linear PID controller, with our DCF-FNC giving the best results in terms of both accuracy and compactness of the controller, as well as being less computationally intensive than the CCN. We argue that our DCF-FNC feedback controller with both structure and parameter learning can provide a computationally efficient solution to control of many real-world multivariable nonlinear processes in presence of disturbances and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frayman, Y., Wang, L. A dynamically-constructed fuzzy neural controller for direct model reference adaptive control of multi-input-multi-output nonlinear processes. Soft Computing 6, 244–253 (2002). https://doi.org/10.1007/s005000100150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005000100150

Navigation