Abstract
The concept of topological IL-algebra is introduced in this paper. It generalizes the idea of topological FL\(_{\text{ ew }}\)-algebra, BL-algebra, and MV-algebra. Linear topology on IL-algebra is defined by a system of affine filters, and some of its properties are achieved. With the help of an inverse system of IL-algebras, completion of a topological IL-algebra is obtained.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availibility
Enquiries about data availability should be directed to the authors.
References
Akhlaghinia N, Borzooei RA, Kologani MA (2021) Preideals in EQ-algebras. Soft Comput 25:12703–12715. https://doi.org/10.1007/s00500-021-06071-y
Borzooei RA, Rezaei GR, Kouhestani N (2012) Separation axioms in (semi)topological quotient BL-algebras. Soft Comput - Fusion Found Methodol Appl 16(7):1219–1227. https://doi.org/10.1007/s00500-012-0808-6
Borzooei RA, Shoar SK, Ameri R (2012) Some types of filters in MTL-algebras. Fuzzy Sets Syst 187:92–102. https://doi.org/10.1016/j.fss.2011.09.001
Chakraborty MK, Sen J (1998) MV-algebra embedded in a CL-algebra. Int J Approx Reason 18:217–229. https://doi.org/10.1016/S0888-613X(98)00007-3
Fussner W, Ugolini S (2019) A topological approach to MTL-algebras. Algebra Univers. https://doi.org/10.1007/s00012-019-0612-6
Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated lattices: an algebraic glimpse at substructural logics. Elsevier, Amsterdam
Gasse BV, Deschrijver G, Cornelis C, Kerre EE (2010) Filters of residuated lattices and triangle algebras. Inf Sci 180(16):3006–3020. https://doi.org/10.1016/j.ins.2010.04.010
Ghorbani S, Hasankhani A (2010) Some properties of quotient topology on residuated lattices. Pure Math Appl 21(1):15–26
Girard J-Y (1987) Linear logic. Theor Comput Sci 50(1):1–101. https://doi.org/10.1016/0304-3975(87)90045-4
Grätzer G (1979) Universal Algebra, vol 2. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-77487-9
Hájek P (1998) Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/978-94-011-5300-3
Haveshki M, Saeid AB, Eslami E (2006) Some types of filters in BL-algebras. Soft Comput 10(8):657–664. https://doi.org/10.1007/s00500-005-0534-4
He P, Yang J, Wang J (2021) Solutions to two open problems in topological residuated lattices. Fuzzy Sets Syst 405:65–73. https://doi.org/10.1016/j.fss.2020.03.011
Höhle U (1996) MV-algebra valued filter theory. Quaest Math 19(1–2):23–46. https://doi.org/10.1080/16073606.1996.9631824
Hoo CS (1997) Topological MV-algebras. Topol Appl 81(2):103–121. https://doi.org/10.1016/S0166-8641(97)00027-8
Islam S, Sanyal A, Sen J (2020) Filter theory of IL-algebras. Jr Cal Math Soc 16(2):113–126
Islam S, Sanyal A, Sen J (2022) Fuzzy Filters of IL-algebras. Soft Comput. https://doi.org/10.1007/s00500-022-06985-1
Khanegir R, Rezaei GR, Kouhestani N (2019) Uniform BL-algebras. Soft Comput 23:5991–6003. https://doi.org/10.1007/s00500-018-3533-y
Kondo M, Dudek WA (2008) Filter theory of BL algebras. Soft Comput 12:419–423. https://doi.org/10.1007/s00500-007-0178-7
Kondo M, Turunen E, (2012) Prime filters on residuated lattices. In: IEEE 42nd international symposium on multiple-valued logic. Victoria, BC, Canada. pp 89–91. https://doi.org/10.1109/ISMVL.2012.40
Kouhestani N, Mehrshad S (2017) (Semi)topological quotient BCK-algebras. Afr Mat 28:1235–1251. https://doi.org/10.1007/s13370-017-0513-9
Liu H (2022) On topology of maximal ideals of EBL-algebras. Soft Comput. https://doi.org/10.1007/s00500-022-06860-z
Luan W, Weber H, Yang Y (2021) Filter topologies and topological MV-algebras. Fuzzy Sets Syst 406:11–21. https://doi.org/10.1016/j.fss.2020.08.017
Luan C, Yang Y (2017) Filter topologies on MV-algebras. Soft Comput 21:2531–2535. https://doi.org/10.1007/s00500-017-2574-y
Luan W, Zhao X, Yang Y (2021) Topological characterization of semisimple MV-algebras. Fuzzy Sets Syst 406:1–10. https://doi.org/10.1016/j.fss.2020.09.005
Motamed S, Torkzadeh L (2017) A new class of BL-algebras. Soft Comput 21(3):687–698. https://doi.org/10.1007/s00500-016-2043-z
Najafi M, Rezaei GR, Kouhestani N (2017) On (para, quasi) topological MV-algebras. Fuzzy Sets Syst 313:93–104. https://doi.org/10.1016/j.fss.2016.04.012
Nejad S, Borzooei RA (2019) On topological basic algebras. J Intell Fuzzy Syst 37(5):6629–6644. https://doi.org/10.3233/JIFS-182947
Nganou JB, Tebu SFT (2015) Topological FL\(_{\text{ew}}\)-algebras. J Appl Log, 13(3). ISSN 1570–8683:259–269. https://doi.org/10.1016/j.jal.2015.04.004
Rasouli S (2021) Rickart residuated lattices. Soft Comput 25:13823–13840. https://doi.org/10.1007/s00500-021-06227-w
Rasouli S, Dehghani A (2021) The hull-kernel topology on prime filters in residuated lattices. Soft Comput 25:10519–10541. https://doi.org/10.1007/s00500-021-05985-x
Rasouli S, Dehghani A (2020) Topological residuated lattices. Soft Comput 24:3179–3192. https://doi.org/10.1007/s00500-020-04709-x
Sameri E, Borzooei RA, Bagha DE (2021) Filter theory of extended implicative groupoids. Soft Comput 25:14499–14508. https://doi.org/10.1007/s00500-021-06383-z
Sen J (2001) Some embeddings in linear logic and related issues. PhD Thesis, University of Calcutta, India
Troelstra AS (1992) Lectures on linear logic. No. 29, Center for the Study of Language and Information, Stanford
Turunen E (1999) BL-algebras of basic fuzzy logic. Mathw Soft Comput 6:49–61
Wu S, Luan W, Yang Y (2020) Filter topologies on MV-algebras II. Soft Comput 24:3173–3177. https://doi.org/10.1007/s00500-020-04682-5
Yang J, Xin XL, He PF (2018) Notes on topological BL-algebras. Fuzzy Sets Syst 350:33–40. https://doi.org/10.1016/j.fss.2017.10.011
Yang J, Zhang X (2019) Some weaker versions of topological residuated lattices. Fuzzy Sets Syst 373:62–77. https://doi.org/10.1016/j.fss.2019.03.014
Zahiri O, Borzooei RA (2016) Topology on BL-algebras. Fuzzy Sets Syst, 289. ISSN 0165–0114:137–150. https://doi.org/10.1016/j.fss.2014.11.014
Zhang H, Li Q (2019) Intuitionistic fuzzy filter theory on residuated lattices. Soft Comput 23:6777–6783. https://doi.org/10.1007/s00500-018-3647-2
Zhang J (2011) Topological properties of prime filters in MTL-algebras and fuzzy set representations for MTL-algebras. Fuzzy Sets Syst 178(1):38–53. https://doi.org/10.1016/j.fss.2011.03.002
Acknowledgements
The authors would like to express their sincere thanks to the reviewers for their valuable suggestions and comments.
Funding
The research of the last two authors is funded by the Department of Higher Education, Government of West Bengal, India [Project number- 257(Sanc)/ST/P/S &T/16G-45/2017 dated 25.03.2018].
Author information
Authors and Affiliations
Contributions
All authors have contributed equally to this manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
This article does not contain any studies with human participants. So informed consent is not applicable here.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Islam, S., Sanyal, . & Sen, J. Topological IL-algebras. Soft Comput 26, 8335–8349 (2022). https://doi.org/10.1007/s00500-022-07258-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-022-07258-7