iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00394-014-0815-8
Iron bioavailability from commercially available iron supplements | European Journal of Nutrition Skip to main content

Advertisement

Log in

Iron bioavailability from commercially available iron supplements

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including three liquid-based supplements.

Methods

Iron bioavailability was measured using Caco-2 cells with ferritin formation as a surrogate marker for iron uptake. Statistical analysis was performed using one-way ANOVA followed by either Dunnett’s or Tukey’s multiple comparisons tests.

Results

Spatone Apple® (a naturally iron-rich mineral water with added ascorbate) and Iron Vital F® (a synthetic liquid iron supplement) had the highest iron bioavailability. There was no statistical difference between iron uptake from ferrous sulphate tablets, Spatone® (naturally iron-rich mineral water alone) and Pregnacare Original® (a multimineral/multivitamin tablet).

Conclusion

In our in vitro model, naturally iron-rich mineral waters and synthetic liquid iron formulations have equivalent or better bioavailability compared with ferrous iron sulphate tablets. If these results are confirmed in vivo, this would mean that at-risk groups of IDA could be offered a greater choice of more bioavailable and potentially better tolerated iron preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B (2009) Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr 12(4):444–454. doi:10.1017/S1368980008002401

    Article  Google Scholar 

  2. Shankar P, Boylan M, Sriram K (2010) Micronutrient deficiencies after bariatric surgery. Nutrition 26(11–12):1031–1037. doi:10.1016/j.nut.2009.12.003

    Article  CAS  Google Scholar 

  3. Miller JL (2013) Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect. doi:10.1101/cshperspect.a011866

    Google Scholar 

  4. Andrews NC (1999) Disorders of iron metabolism. New Engl J Med 341(26):1986–1995. doi:10.1056/NEJM199912233412607

    Article  CAS  Google Scholar 

  5. Pavord S, Myers B, Robinson S, Allard S, Strong J, Oppenheimer C, British Committee for Standards in H (2012) UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol 156(5):588–600

    Article  CAS  Google Scholar 

  6. Zhou SJ, Gibson RA, Crowther CA, Makrides M (2009) Should we lower the dose of iron when treating anaemia in pregnancy? A randomized dose-response trial. Eur J Clin Nutr 63(2):183–190. doi:10.1038/sj.ejcn.1602926

    Article  CAS  Google Scholar 

  7. Hyder SM, Persson LA, Chowdhury AM, Ekstrom EC (2002) Do side-effects reduce compliance to iron supplementation? A study of daily- and weekly-dose regimens in pregnancy. J Health Popul Nutr 20(2):175–179

    Google Scholar 

  8. Seck BC, Jackson RT (2008) Determinants of compliance with iron supplementation among pregnant women in Senegal. Public Health Nutr 11(6):596–605. doi:10.1017/S1368980007000924

    Article  Google Scholar 

  9. Habib F, Alabdin EH, Alenazy M, Nooh R (2009) Compliance to iron supplementation during pregnancy. J Obstet Gynaecol 29(6):487–492. doi:10.1080/01443610902984961

    Article  CAS  Google Scholar 

  10. Keller J, Frederking D, Layer P (2008) The spectrum and treatment of gastrointestinal disorders during pregnancy. Nat Clin Pract Gastr 5(8):430–443. doi:10.1038/ncpgasthep1197

    Article  Google Scholar 

  11. Bonapace ES Jr, Fisher RS (1998) Constipation and diarrhea in pregnancy. Gastroenterol Clin N 27(1):197–211

    Article  Google Scholar 

  12. Beard JL (2000) Effectiveness and strategies of iron supplementation during pregnancy. Am J Clin Nutr 71(5 Suppl):1288S–1294S

    CAS  Google Scholar 

  13. Ekstrom EC, Kavishe FP, Habicht JP, Frongillo EA Jr, Rasmussen KM, Hemed L (1996) Adherence to iron supplementation during pregnancy in Tanzania: determinants and hematologic consequences. Am J Clin Nutr 64(3):368–374

    CAS  Google Scholar 

  14. Stoltzfus RJ (2011) Iron interventions for women and children in low-income countries. J Nutr 141(4):756S–762S. doi:10.3945/jn.110.128793

    Article  CAS  Google Scholar 

  15. Worwood M, Evans WD, Villis RJ, Burnett AK (1996) Iron absorption from a natural mineral water (Spatone Iron-Plus). Clin Lab Haematol 18(1):23–27

    Article  CAS  Google Scholar 

  16. Halksworth G, Moseley L, Carter K, Worwood M (2003) Iron absorption from Spatone (a natural mineral water) for prevention of iron deficiency in pregnancy. Clin Lab Haematol 25(4):227–231

    Article  CAS  Google Scholar 

  17. Zariwala MG, Somavarapu S, Farnaud S, Renshaw D (2013) Comparison study of oral iron preparations using a human intestinal model. Sci Pharm 81(4):1123–1139. doi:10.3797/scipharm.1304-03

    Article  CAS  Google Scholar 

  18. Glahn RP, Lee OA, Yeung A, Goldman MI, Miller DD (1998) Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J Nutr 128(9):1555–1561

    CAS  Google Scholar 

  19. Yun S, Habicht JP, Miller DD, Glahn RP (2004) An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J Nutr 134(10):2717–2721

    CAS  Google Scholar 

  20. Caro IBX, Rousset M, Meunier V, Bourrie M, Julian B, Joyeux H, Roques C, Berger Y, Zweibaum A, Fabre G (1995) Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs. Int J Pharm 116:147–158

    Article  CAS  Google Scholar 

  21. Sharp P, Tandy S, Yamaji S, Tennant J, Williams M, Singh Srai SK (2002) Rapid regulation of divalent metal transporter (DMT1) protein but not mRNA expression by non-haem iron in human intestinal Caco-2 cells. FEBS Lett 510(1–2):71–76

    Article  CAS  Google Scholar 

  22. Christides T, Sharp P (2013) Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells. PLoS One 8(12):e83031. doi:10.1371/journal.pone.0083031

    Article  Google Scholar 

  23. Glahn RP, Rassier M, Goldman MI, Lee OA, Cha J (2000) A comparison of iron availability from commercial iron preparations using an in vitro digestion/Caco-2 cell culture model. J Nutr Biochem 11(2):62–68

    Article  CAS  Google Scholar 

  24. Motulsky H (2010) Intuitive biostatistics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  25. McKenna D, Spence D, Haggan SE, McCrum E, Dornan JC, Lappin TR (2003) A randomized trial investigating an iron-rich natural mineral water as a prophylaxis against iron deficiency in pregnancy. Clin Lab Haematol 25(2):99–103

    Article  CAS  Google Scholar 

  26. Teucher B, Olivares M, Cori H (2004) Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res 74(6):403–419

    Article  CAS  Google Scholar 

  27. Olivares M, Pizarro F, Ruz M, de Romana DL (2012) Acute inhibition of iron bioavailability by zinc: studies in humans. Biometals 25(4):657–664. doi:10.1007/s10534-012-9524-z

    Article  CAS  Google Scholar 

  28. Scholl TO (2005) Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr 81(5):1218S–1222S

    CAS  Google Scholar 

  29. CDC (1998) Recommendations to prevent and control iron deficiency in the United States. MMWR Recomm Rep, vol 47. Centers for Disease Control and Prevention

  30. WHO (World Health Oreganization) (2012) Guideline: daily iron and folic acid supplementation in pregnant women. Geneva, World Health Organization

  31. WHO (World Health Organization) (2012) Guideline: intermittent iron and folic acid supplementation in non-anaemic pregnant women. Geneva, World Health Organization

  32. NICE (2008) Antenatal care: routine care for the healthy pregnant woman. National Institute for Clinical Excellence, London

    Google Scholar 

  33. Fenton V, Cavill I, Fisher J (1977) Iron stores in pregnancy. Br J Haematol 37(1):145–149

    Article  CAS  Google Scholar 

  34. Cuervo LG, Mahomed K (2001) Treatments for iron deficiency anaemia in pregnancy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD003094

    Google Scholar 

  35. Pena-Rosas JP, Viteri FE (2009) Effects and safety of preventive oral iron or iron + folic acid supplementation for women during pregnancy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD004736.pub3

    Google Scholar 

  36. Krafft A (2013) Iron supplementation in pregnancy. Br Med J 347:f4399. doi:10.1136/bmj.f4399

    Article  Google Scholar 

  37. Pena-Rosas JP, De-Regil LM, Dowswell T, Viteri FE (2012) Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD004736.pub4

    Google Scholar 

  38. Haider BA, Olofin I, Wang M, Spiegelman D, Ezzati M, Fawzi WW, Nutrition Impact Model Study G (2013) Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. Br Med J 346:f3443. doi:10.1136/bmj.f3443

    Article  Google Scholar 

  39. Jauregui-Lobera I (2013) Iron deficiency and bariatric surgery. Nutrients 5(5):1595–1608. doi:10.3390/nu5051595

    Article  CAS  Google Scholar 

  40. Bal BS, Finelli FC, Shope TR, Koch TR (2012) Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol 8(9):544–556. doi:10.1038/nrendo.2012.48

    Article  CAS  Google Scholar 

  41. Stein J, Stier C, Raab H, Weiner R (2014) Review article: the nutritional and pharmacological consequences of obesity surgery. Aliment Pharm Ther 40(6):582–609. doi:10.1111/apt.12872

    Article  CAS  Google Scholar 

  42. Sawaya RA, Jaffe J, Friedenberg L, Friedenberg FK (2012) Vitamin, mineral, and drug absorption following bariatric surgery. Curr Drug Metab 13(9):1345–1355

    Article  CAS  Google Scholar 

  43. Gasteyger C, Suter M, Gaillard RC, Giusti V (2008) Nutritional deficiencies after Roux-en-Y gastric bypass for morbid obesity often cannot be prevented by standard multivitamin supplementation. Am J Clin Nutr 87(5):1128–1133

    CAS  Google Scholar 

  44. Gesquiere I, Lannoo M, Augustijns P, Matthys C, Van der Schueren B, Foulon V (2014) Iron deficiency after Roux-en-Y gastric bypass: insufficient iron absorption from oral iron supplements. Obes Surg 24(1):56–61. doi:10.1007/s11695-013-1042-8

    Article  Google Scholar 

  45. Clements RH, Katasani VG, Palepu R, Leeth RR, Leath TD, Roy BP, Vickers SM (2006) Incidence of vitamin deficiency after laparoscopic Roux-en-Y gastric bypass in a university hospital setting. Am Surg 72(12):1196–1202

    Google Scholar 

  46. Netto BD, Moreira EA, Patino JS, Beninca JP, Jordao AA, Frode TS (2012) Influence of Roux-en-Y gastric bypass surgery on vitamin C, myeloperoxidase, and oral clinical manifestations: a 2-year follow-up study. Nutr Clin Pract 27(1):114–121. doi:10.1177/0884533611431462

    Article  Google Scholar 

  47. Fairweather-Tait S, Lynch S, Hotz C, Hurrell R, Abrahamse L, Beebe S, Bering S, Bukhave K, Glahn R, Hambidge M, Hunt J, Lonnerdal B, Miller D, Mohktar N, Nestel P, Reddy M, Sandber AS, Sharp P, Teucher B, Trinidad TP (2005) The usefulness of in vitro models to predict the bioavailability of iron and zinc: a consensus statement from the HarvestPlus expert consultation. Int J Vitam Nutr Res 75(6):371–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty of Engineering and Science at the University of Greenwich, and the Diabetes and Nutritional Sciences Division at King’s College London. We thank David Scott Ganis for assistance with statistical and numerical analysis.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Christides.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christides, T., Wray, D., McBride, R. et al. Iron bioavailability from commercially available iron supplements. Eur J Nutr 54, 1345–1352 (2015). https://doi.org/10.1007/s00394-014-0815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0815-8

Keywords

Navigation