iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00373-023-02639-7
The Eulerian Distribution on k-Colored Involutions | Graphs and Combinatorics Skip to main content
Log in

The Eulerian Distribution on k-Colored Involutions

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \({\mathcal {I}}_{n,k}\) be the set of k-colored involutions of order n and \({\mathcal {J}}_{n,k}\) be the set of k-colored involutions in \({\mathcal {I}}_{n,k}\) without fixed points. Denote by \(des(\pi ,c)\) the number of descents of k-colored permutations \((\pi ,c)\). In this paper, it is proved that the following polynomials

$$\begin{aligned} I_{n,k}(x)= & {} \sum \limits _{(\pi ,c)\in {\mathcal {I}}_{n,k}}x^{des(\pi ,c)} ( n\ge 1, k\ge 1)\text { and }\\ J_{n,k}(x)= & {} \sum \limits _{(\pi ,c)\in {\mathcal {J}}_{n,k}}x^{des(\pi ,c)} ( n\ge 1, k\ge 2 ) \end{aligned}$$

are \(\gamma \)-positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statements

All data generated or analysed during this study are included in this published article.

References

  1. Athanasiadis, C.A.: Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., 77, Article B77i (2018)

  2. Brändén, P.: Actions on permutations and unimodality of descent polynomials. Euro. J. Combin. 29, 514–531 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brändén, P.: Unimodality, log-concavity, real-rootedness and beyond. Handbook of Enumerative Combinatorics, 437–483 (2015)

  4. Cao, J., Liu, Lily L.: The Eulerian distribution on the involutions of the hyperoctahedral group is indeed \(\gamma \)-positive. Graphs Combin. 37, no. 6, 1943-1951 (2021)

  5. Cao, J., Liu, Lily L.: The Eulerian distribution on the fixed-point free involutions of the hyperoctahedral group, J. Algebr. Combin., https://doi.org/10.1007/s10801-022-01195-2

  6. Chow, C.-O.: On certain combinatorial expansions of the Eulerian polynomials. Adv. Appl. Math. 41, 133–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Désarménien, J., Foata, D.: Fonctions symétriques et séries hypergéométriques basiques multivariées. Bull. Soc. Math. France 113, 3–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dilks, K., Petersen, T.K., Stembridge, J.R.: Affine descents and the Steinberg torus. Adv. Appl. Math. 42, 423–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dukes, W.M.B.: Permutation statistics on involutions. Euro. J. Combin. 28, 186–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Foata, D., Schützenberger, M.-P.: Théorie Géométrique des Polynomes Eulériens. Lecture Notes in Math, vol. 138. Springer-Verlag, Berlin, New York (1970)

  11. Foata, D., Strehl, V.: Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers. Math. Z. 137, 257–264 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gal, S.R.: Real root conjecture fails for five and higher-dimensional spheres. Discrete Comput. Geom. 34, 269–284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gessel, I.M., Reutenauer, C.: Counting permutations with given cycle structure and descent set. J. Combin. Theory Ser. A 64(2), 189–215 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gessel, I.M., Stanley, R.P.: Stirling polynomials. J. Combin. Theory Ser. A 24, 24–33 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, V.J., Zeng, J.: The Eulerian distribution on involutions is indeed unimodal. J. Combin. Theory Ser. A 113, 1061–1071 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, B.: Gamma-positivity of derangement polynomials and binomial Eulerian polynomials for colored permutations, J. Combin. Theory Ser. A, 182, Article 105459, 22 pp (2021)

  17. Lin, Z.C., Zeng, J.: The \(\gamma \)-positivity of basic Eulerian polynomials via group actions, J. Combin. Theory, Ser. A, 135, 112-129 (2015)

  18. Lin, Z.C., Ma, J., Ma, S.-M., Zhou, Y.: Weakly increasing trees on a multiset. Adv. Appl. Math. 129, 102206 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Z.C., Ma, J., Zhang, P.B.: Statistics on multipermutations and partial \(\gamma \)-positivity, J. Combin. Theory Ser. A 183, Paper No. 105488, 24 pp (2021)

  20. Lin, Z.C., Ma, J.: A symmetry on weakly increasing trees and multiset Schett polynomials, arXiv:2104.10539

  21. Lin, Z.C., Xu, C., Zhao, T.Y.: On the \(\gamma \)-positivity of multiset Eulerian Polynomials, European J. Combin. 102, Paper No. 103491, 18 pp (2022)

  22. Moustakas, V.-D.: The Eulerian Distribution on the Involutions of the Hyperoctahedral Group is Unimodal. Graphs Combin. 35, 1077–1090 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nevo, E., Petersen, T.K., Tenner, B.E.: The \(\gamma \)-vector of a barycentric subdivision. J. Combin. Theory Ser. A 118, 1364–1380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Petersen, T.K.: Eulerian numbers. With a foreword by Richard Stanley. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser/Springer, New York, (2015)

  25. Petersen, T.K.: Two-sided Eulerian numbers via balls in boxes. Math. Mag. 86, 159–176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Strehl, V.: Symmetric Eulerian distributions for involutions, Sém. Lothar. Combin. 1 (1981)

  27. Wang, D.: The Eulerian distribution on involutions is indeed \(\gamma \)-positive. J. Combin. Theory Ser. A 165, 139–151 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflicts of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Toumazet, F. & Wang, J. The Eulerian Distribution on k-Colored Involutions. Graphs and Combinatorics 39, 44 (2023). https://doi.org/10.1007/s00373-023-02639-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02639-7

Keywords

Mathematics Subject Classification

Navigation