iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00373-022-02539-2
Zero-Sum Copies of Spanning Forests in Zero-Sum Complete Graphs | Graphs and Combinatorics Skip to main content
Log in

Zero-Sum Copies of Spanning Forests in Zero-Sum Complete Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For a complete graph \(K_n\) of order n, an edge-labeling \(c:E(K_n)\rightarrow \{ -1,1\}\) satisfying \(c(E(K_n))=0\), and a spanning forest F of \(K_n\), we consider the problem to minimize \(|c(E(F'))|\) over all isomorphic copies \(F'\) of F in \(K_n\). In particular, we ask under which additional conditions there is a zero-sum copy, that is, a copy \(F'\) of F with \(c(E(F'))=0\). We show that there is always a copy \(F'\) of F with \(|c(E(F'))|\le \Delta (F)+1\), where \(\Delta (F)\) is the maximum degree of F. We conjecture that this bound can be improved to \(|c(E(F'))|\le (\Delta (F)-1)/2\) and verify this for F being the star \(K_{1,n-1}\). Under some simple necessary divisibility conditions, we show the existence of a zero-sum \(P_3\)-factor, and, for sufficiently large n, also of a zero-sum \(P_4\)-factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Caro, Y.: Zero-sum problems: a survey. Discrete Math. 152, 93–113 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caro, Y., Hansberg, A., Lauri, J., Zarb, C.: On zero-sum spanning trees and zero-sum connectivity. Electron. J. Comb. 29, 19 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caro, Y., Yuster, R.: On zero-sum and almost zero-sum subgraphs over \({\mathbb{Z}}\). Graphs Comb. 32, 49–63 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ehard, S., Mohr, E., Rautenbach, D.: Low weight perfect matchings. Electron. J. Comb. 27, 449 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdős, P., Ginzburg, A., Ziv, A.: Theorem in the additive number theory. Bull. Res. Counc. Isr. 10F, 41–43 (1961)

    MathSciNet  MATH  Google Scholar 

  6. Füredi, Z., Kleitman, D.: On zero-trees. J. Graph Theory 16, 107–120 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, W., Geroldinger, A.: Zero-sum problems in finite abelian groups: a survey. Expos. Math. 24, 337–369 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kittipassorn, T., Sinsap, P.: On the existence of zero-sum perfect matchings of complete graphs. arXiv:2011.00862v1

  9. Schrijver, A., Seymour, P.D.: A simpler proof and a generalization of the zero-trees theorem. J. Comb. Theory Ser. A 58, 301–305 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Rautenbach.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohr, E., Pardey, J. & Rautenbach, D. Zero-Sum Copies of Spanning Forests in Zero-Sum Complete Graphs. Graphs and Combinatorics 38, 132 (2022). https://doi.org/10.1007/s00373-022-02539-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02539-2

Keywords

Navigation