iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00373-012-1187-6
The Existence of (K 2 × K 6)-Designs | Graphs and Combinatorics Skip to main content
Log in

The Existence of (K 2 × K 6)-Designs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Direct and recursive constructions are established for graph designs for K 2 × K 6 grid-blocks. Using these, the existence of graph designs of index one in which the blocks are K 2 × K 6 grid-blocks is completely determined: A (K 2 × K 6)-design of order v exists if and only if \({v\equiv1\pmod{72}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beth T., Jungnickel D., Lenz H.: Design Theory. Cambidge University Press, Cambidge (1999)

    Book  Google Scholar 

  2. Bollobas B.: Graph Theory. Spriger-Verlag, New York (1979)

    Book  MATH  Google Scholar 

  3. Carter, J.E.: Designs on Cubic Multigraphs. Ph.D. thesis, McMaster University, Canada (1989)

  4. Chateauneuf M.A., Colbourn C.J., Kreher D.L., Lamken E.R., Tonney D.C.: Pooling, lattice square, and union jack designs. Ann. Combinat. 3, 27–35 (1999)

    Article  MATH  Google Scholar 

  5. Colbourn C.J., Dinitz J.H.: The CRC Hankbook of Combinatorial Designs. CRC Press, Boca Raton (2007)

    Google Scholar 

  6. Fu H.L., Hwang F.K., Jimbo M., Shiue C.L.: Decomposing complete graphs into \({K_r \times K_c^{\prime}s}\). J. Stat. Plann. Inference 119, 225–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hwang F.K.: An isomorphic factorization of the complete graph. J. Graph Theory 19, 333–337 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li Y., Yin J.: Resolvable packings of K v with K 2 × K c ’s. J. Combin. Des. 17, 177–189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li Y., Yin J., Zhang R., Ge G.: The decomposition of K v into K 2 × K 5’s. Sci. China Ser. A 50, 1382–1388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mutoh Y., Jimbo M., Fu H.L.: A resolvable r × c grid-block packing and its application to DNA library screening. Taiwanese J. Math. 8, 713–737 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Mutoh Y., Morihara T., Jimbo M., Fu H.L.: The existence of 2 × 4 grid-block designs and their applications. SIAM J. Discrete Math. 16, 173–178 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Raghavarao D.: Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York (1971)

    MATH  Google Scholar 

  13. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River (1996)

  14. Yates F.: Lattice squares. J. Agric. Sci. 30, 672–687 (1940)

    Article  Google Scholar 

  15. Zhang, R., Ge, G., Ling, Alan C.H., Fu, H.L., Mutoh, Y.: The existence of r × 4 grid-block designs with r = 3, 4. SIAM J. Discrete Math. 23, 1045–1062 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengmin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Colbourn, C.J. The Existence of (K 2 × K 6)-Designs. Graphs and Combinatorics 29, 1557–1567 (2013). https://doi.org/10.1007/s00373-012-1187-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1187-6

Keywords

Mathematics Subject Classification

Navigation