iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00373-010-0903-3
A k-Tree Containing Specified Vertices | Graphs and Combinatorics Skip to main content
Log in

A k-Tree Containing Specified Vertices

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A k-tree is a tree with maximum degree at most k. In this paper, we give sufficient conditions for a graph to have a k-tree containing specified vertices. Let k be an integer with k > 3. Let G be a graph of order n and let \({S \subseteq V(G)}\) with κ(S) ≥ 1. Suppose that for every l > κ(S), there exists an integer t such that \({1 \le t \leq (k-1)l+2 - \lfloor \frac{l-1}{k} \rfloor}\) and the degree sum of any t independent vertices of S is at least ntlkl − 1. Then G has a k-tree containing S. We also show some new results on a spanning k-tree as corollaries of the above theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abderrezzak M.E.K., Flandrin E., Amar D.: Cyclability and pancyclability in bipartite graphs. Discrete Math. 236, 3–11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bollobás B., Brightwell G.: Cycles through specified vertices. Combinatorica 13, 147–155 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bondy, J.A.: Basic graph theory—paths and circuits. Handbook of Combinatorics, vol. I, pp. 5–110. Elsevier, Amsterdam (1995)

    Google Scholar 

  4. Broersma H.J., Li H., Li J., Tian F., Veldman H.J.: Cycles through subsets with large degree sums. Discrete Math. 171, 43–54 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Čada R., Flandrin E., Li H., Ryjáček Z.: Cycles through given vertices and closures. Discrete Math. 276, 65–80 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chvátal, V., Erdős, P.: A note on hamiltonian circuits. Discrete Math. 2, 111–113 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cutler J.: Trees through specified vertices. Discrete Math. 309, 2749–2754 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ellingham M.N., Zha X.: Toughness, trees, and walks. J. Graph Theory 33, 125–137 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Favaron O., Flandrin E., Li H., Liu Y., Tian F., Wu Z.: Sequences, claws and cyclability of graphs. J. Graph Theory 21, 357–369 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fournier, I.: Cycles et Numérotations de Graphes. Thèse d’Etat, L.R.I., Université de Paris-Sud (1985)

  11. Fujisawa, J., Matsumura, H., Yamashita, T.: Degree bounded trees (submitted)

  12. Harkat-Benhamdine A., Li H., Tian F.: Cyclability of 3-connected graphs. J. Graph Theory 34, 191–203 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kyaw A.: A sufficient condition for a graph to have a k-tree. Graphs Combin. 17, 113–121 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Matsuda H., Matsumura H.: Degree conditions and degree bounded trees. Discrete Math. 309, 3653–3658 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Matsuda H., Matsumura H.: On a k-tree containing specified leaves in a graph. Graphs Combin. 22, 371–381 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Neumann-Lara V., Rivera-Campo E.: Spanning trees with bounded degrees. Combinatorica 11, 55–61 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ore O.: Note on Hamiltonian circuits. Am. Math. Monthly 67, 55 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ota K.: Cycles through prescribed vertices with large degree sum. Discrete Math. 145, 201–210 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ozeki K., Yamashita T.: A degree sum condition concerning the connectivity and the independence number of a graph. Graphs Combin. 24, 469–483 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shi R.H.: 2-Neighborhoods and Hamiltonian conditions. J. Graph Theory 16, 267–271 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Win S.: Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen. Abh. Math. Seminar Univ. Hamburg 43, 263–267 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Win S.: On a connection between the existence of k-trees and the toughness of a graph. Graphs Combin. 5, 201–205 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuya Chiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiba, S., Matsubara, R., Ozeki, K. et al. A k-Tree Containing Specified Vertices. Graphs and Combinatorics 26, 187–205 (2010). https://doi.org/10.1007/s00373-010-0903-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0903-3

Keywords

Navigation