Abstract
A k-tree is a tree with maximum degree at most k. In this paper, we give sufficient conditions for a graph to have a k-tree containing specified vertices. Let k be an integer with k > 3. Let G be a graph of order n and let \({S \subseteq V(G)}\) with κ(S) ≥ 1. Suppose that for every l > κ(S), there exists an integer t such that \({1 \le t \leq (k-1)l+2 - \lfloor \frac{l-1}{k} \rfloor}\) and the degree sum of any t independent vertices of S is at least n + tl − kl − 1. Then G has a k-tree containing S. We also show some new results on a spanning k-tree as corollaries of the above theorem.
Similar content being viewed by others
References
Abderrezzak M.E.K., Flandrin E., Amar D.: Cyclability and pancyclability in bipartite graphs. Discrete Math. 236, 3–11 (2001)
Bollobás B., Brightwell G.: Cycles through specified vertices. Combinatorica 13, 147–155 (1993)
Bondy, J.A.: Basic graph theory—paths and circuits. Handbook of Combinatorics, vol. I, pp. 5–110. Elsevier, Amsterdam (1995)
Broersma H.J., Li H., Li J., Tian F., Veldman H.J.: Cycles through subsets with large degree sums. Discrete Math. 171, 43–54 (1997)
Čada R., Flandrin E., Li H., Ryjáček Z.: Cycles through given vertices and closures. Discrete Math. 276, 65–80 (2004)
Chvátal, V., Erdős, P.: A note on hamiltonian circuits. Discrete Math. 2, 111–113 (1972)
Cutler J.: Trees through specified vertices. Discrete Math. 309, 2749–2754 (2009)
Ellingham M.N., Zha X.: Toughness, trees, and walks. J. Graph Theory 33, 125–137 (2000)
Favaron O., Flandrin E., Li H., Liu Y., Tian F., Wu Z.: Sequences, claws and cyclability of graphs. J. Graph Theory 21, 357–369 (1996)
Fournier, I.: Cycles et Numérotations de Graphes. Thèse d’Etat, L.R.I., Université de Paris-Sud (1985)
Fujisawa, J., Matsumura, H., Yamashita, T.: Degree bounded trees (submitted)
Harkat-Benhamdine A., Li H., Tian F.: Cyclability of 3-connected graphs. J. Graph Theory 34, 191–203 (2000)
Kyaw A.: A sufficient condition for a graph to have a k-tree. Graphs Combin. 17, 113–121 (2001)
Matsuda H., Matsumura H.: Degree conditions and degree bounded trees. Discrete Math. 309, 3653–3658 (2009)
Matsuda H., Matsumura H.: On a k-tree containing specified leaves in a graph. Graphs Combin. 22, 371–381 (2006)
Neumann-Lara V., Rivera-Campo E.: Spanning trees with bounded degrees. Combinatorica 11, 55–61 (1991)
Ore O.: Note on Hamiltonian circuits. Am. Math. Monthly 67, 55 (1960)
Ota K.: Cycles through prescribed vertices with large degree sum. Discrete Math. 145, 201–210 (1995)
Ozeki K., Yamashita T.: A degree sum condition concerning the connectivity and the independence number of a graph. Graphs Combin. 24, 469–483 (2008)
Shi R.H.: 2-Neighborhoods and Hamiltonian conditions. J. Graph Theory 16, 267–271 (1992)
Win S.: Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen. Abh. Math. Seminar Univ. Hamburg 43, 263–267 (1975)
Win S.: On a connection between the existence of k-trees and the toughness of a graph. Graphs Combin. 5, 201–205 (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chiba, S., Matsubara, R., Ozeki, K. et al. A k-Tree Containing Specified Vertices. Graphs and Combinatorics 26, 187–205 (2010). https://doi.org/10.1007/s00373-010-0903-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-010-0903-3