iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00373-007-0700-9
Recent Progress on Combinatorics and Algorithms for Low Discrepancy Roundings | Graphs and Combinatorics Skip to main content
Log in

Recent Progress on Combinatorics and Algorithms for Low Discrepancy Roundings

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Given a [0,1]-valued n-dimensional vector a = (a1, a2, . . . , a n ) ∈[0,1]V indexed by a set V  = {v1, v2, . . . , v n }, we consider the problem of approximating a by a binary (i.e., {0,1}-valued) vector α = (α1, α2, . . . , α n ) ∈{0,1}V under the discrepancy measure with respect to a hypergraph \(\mathcal{H} = (V, \mathcal{F})\). We are interested in the properties of low-discrepancy roundings. Especially, we survey recent works on the combinatorial properties of a global rounding; that is, rounding whose discrepancy is less than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asano, T.: Digital halftoning: algorithm engineering challenges. IEICE Trans. Inf. Syst. E86-D-2, 159–178 (2003)

  • Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: The Structure and number of global roundings of a graph. Theor. Comput. Sci. 325(3), 425–437 (2004)

    Google Scholar 

  • Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: On geometric structure of global roundings for graphs and range spaces. Proceedings of 9th Scandinavian Workshop on Algorithm Theory (SWAT2004), vol. LNCS 3111, pp. 455–467 (2004)

  • Asano, T., Katoh, N., Obokata, K., Tokuyama, T.: Matrix rounding under the L p -discrepancy measure and its application to digital halftoning. SIAM J. Comput. 32(6), 1423–1435 (2003)

    Google Scholar 

  • Asano, T., Matsui, T., Tokuyama, T.: Optimal roundings of sequences and matrices. Nordic J. Comput. 7, 241–256 (2000)

    Google Scholar 

  • Asano, T., Tokuyama, T.: How to color a checkerboard with a given distribution—matrix rounding achieving low 2  ×  2 discrepancy. In: Proceedings of 12th ISAAC, vol. LNCS 2223, pp. 636–648 (2001)

  • Baranyai, Z.: On the factorization of the complete uniform Hypergraphs, in Infinite and finite sets. In: Hajnal, A., Rado R., Sós, V. T., (eds.) Colloq. Math. Soc. János Bolyai 10, 91–108 (1975)

  • Beck, J., Sós, V. T.: Discrepancy theory. In: Graham, T., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. II, Elsevier (1995)

  • Bohus, G.: On the discrepancy of 3 permutations. Random Struct. Algorithms 1, 215–220 (1990)

    Google Scholar 

  • Chazelle B.: The discrepancy method. Cambridge University Press, Cambridge (2000)

  • Doerr, B.: Lattice approximation and linear discrepancy of totally unimodular matrices. In: Proceedings of 12th ACM-SIAM Symposium on Discrete Algorithms (SODA2001) pp. 119–125 (2001)

  • Doerr, B.: Global roundings of sequences. Inf. Proc. Lett. 92-3, 113–116 (2004)

    Google Scholar 

  • Doerr, B.: Matrix rounding with low error in small submatrices. In: Proceedings of 16th ACM-SIAM Symposium on Discrete Algorithms (SODA2005) 1067–1068 (2005)

  • Doerr, B.: Non-independent randomized rounding and an application to digital halftoning. SIAM J. Comput. 34-2, 299–317 (2004)

    Google Scholar 

  • Ghouila-Houri, A.: Charactérisation des matrices totalement unimodulaires. C. R. Acad. Sci. Paris 254, 1192–1194 (1962)

  • Hirokawa, Y.: On discrepancy of optimal rounding of a matrix. Master course dissertation. Tohoku University (in Japanese) (2005)

  • Jansson J., Tokuyama, T.: Semi-balanced coloring of graphs— 2-colorings based on a relaxed discrepancy condition. Graph Comb. 20-2, 205–222 (2004)

    Google Scholar 

  • Knuth, D.E.: Tow-way rounding. SIAM J. Discrete Math. 8-2, 281–290 (1995)

    Google Scholar 

  • Matoušek, J.: Geometric discrepancy. Algorithms and combinatorics, vol. 18, Springer, Heidelberg (1999)

  • Papadimitriou, C., Steiglitz, K.: Combinatorial optimization, algorithms and complexity. Princeton Hall, Alaska (1982) (New edition, Dover publication 1998)

  • Rödl, V., Winkler, P.: Concerning a matrix approximation problem. Crux Math. 76–79 (1990)

  • Sadakane, K., Takki-Chebihi, N., Tokuyama, T.: Combinatorics and algorithms on low-discrepancy roundings of a real sequence. Theor. Comput. Sci. 331-1, 23–36 (2005)

    Google Scholar 

  • Srinivasan, A.: Improving the discrepancy bound for sparse matrices: better approximations for sparse lattice approximation problems. In: Proceedings of 8th ACM-SIAM Symposium of Discrete Algorithms (SODA1997), pp. 692–701 (1997)

  • Takki-Chebihi, N.: Global rounding and its application to digital halftoning. doctoral dissertation. Graduate Schools of Information Sciences, Tohoku University, (2004)

  • Takki-Chebihi, N., Tokuyama, T.: Enumerating roundings for an outerplanar graph. In: Proceedings of 14th International Symposium on Algorithms and Computation (ISAAC2003), vol. LNCS 2906, pp. 425–433 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Tokuyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokuyama, T. Recent Progress on Combinatorics and Algorithms for Low Discrepancy Roundings. Graphs and Combinatorics 23 (Suppl 1), 359–378 (2007). https://doi.org/10.1007/s00373-007-0700-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-007-0700-9

Keywords

Navigation