Abstract
We present a co-segmentation technique for space-time co-located image collections. These prevalent collections capture various dynamic events, usually by multiple photographers, and may contain multiple co-occurring objects which are not necessarily part of the intended foreground object, resulting in ambiguities for traditional co-segmentation techniques. Thus, to disambiguate what the common foreground object is, we introduce a weakly supervised technique, where we assume only a small seed, given in the form of a single segmented image. We take a distributed approach, where local belief models are propagated and reinforced with similar images. Our technique progressively expands the foreground and background belief models across the entire collection. The technique exploits the power of the entire set of image without building a global model, and thus successfully overcomes large variability in appearance of the common foreground object. We demonstrate that our method outperforms previous co-segmentation techniques on challenging space-time co-located collections, including dense benchmark datasets which were adapted for our novel problem setting.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arpa, A., Ballan, L., Sukthankar, R., Taubin, G., Pollefeys, M., Raskar, R.: Crowdcam: instantaneous navigation of crowd images using angled graph. In: International Conference on 3D Vision-3DV 2013, pp. 422–429. IEEE (2013)
Basha, T., Moses, Y., Avidan, S.: Photo sequencing. In: Computer Vision–ECCV 2012, pp. 654–667. Springer (2012)
Batra, D., Kowdle, A., Parikh, D., Luo, J., Chen, T.: icoseg: Interactive co-segmentation with intelligent scribble guidance. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176. IEEE (2010)
Campbell, N.D., Vogiatzis, G., Hernández, C., Cipolla, R.: Automatic 3d object segmentation in multiple views using volumetric graph-cuts. Image Vis. Comput. 28(1), 14–25 (2010)
Chang, K.Y., Liu, T.L., Lai, S.H.: From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2129–2136. IEEE (2011)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)
Chiu, W.C., Fritz, M.: Multi-class video co-segmentation with a generative multi-video model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 321–328 (2013)
Djelouah, A., Franco, J.S., Boyer, E., Pérez, P., Drettakis, G.: Cotemporal multi-view video segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 360–369. IEEE (2016)
Faktor, A., Irani, M.: Co-segmentation by composition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1297–1304 (2013)
Fan, Q., Zhong, F., Lischinski, D., Cohen-Or, D., Chen, B.: Jumpcut: non-successive mask transfer and interpolation for video cutout. ACM Trans. Gr. (TOG) 34(6), 195 (2015)
Fu, H., Xu, D., Lin, S., Liu, J.: Object-based rgbd image co-segmentation with mutex constraint. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4428–4436 (2015)
Gang, Z., Long, Q.: Silhouette extraction from multiple images of an unknown background. In: Proceedings of the Asian Conference of Computer Vision, Citeseer (2004)
HaCohen, Y., Shechtman, E., Goldman, D.B., Lischinski, D.: Non-rigid dense correspondence with applications for image enhancement. ACM Trans. Gr. (TOG) 30(4), 70 (2011)
Heskes, T.: Convexity arguments for efficient minimization of the Bethe and Kikuchi free energies. J. Artif. Intell. Res. 26(1), 153–190 (2006)
Kim, G., Xing, E.P.: On multiple foreground cosegmentation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 837–844. IEEE (2012)
Kim, G., Xing, E.P.: Jointly aligning and segmenting multiple web photo streams for the inference of collective photo storylines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 620–627 (2013)
Kim, G., Xing, E.P., Fei-Fei, L., Kanade, T.: Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 169–176. IEEE (2011)
Kuettel, D., Guillaumin, M., Ferrari, V.: Segmentation propagation in imagenet. In: Computer Vision–ECCV 2012, pp. 459–473. Springer (2012)
Maerki, N., Perazzi, F., Wang, O., Sorkine-Hornung, A.: Bilateral space video segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Mustafa, A., Hilton, A.: Semantically coherent co-segmentation and reconstruction of dynamic scenes. In: CVPR 2017 Proceedings (2017)
Ning, J., Zhang, L., Zhang, D., Wu, C.: Interactive image segmentation by maximal similarity based region merging. Pattern Recogn. 43(2), 445–456 (2010)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.V., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Computer Vision and Pattern Recognition (2016)
Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 128–140 (2017)
Ramakanth, S.A., Babu, R.V.: Seamseg: Video object segmentation using patch seams. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 376–383. IEEE (2014)
Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 993–1000. IEEE (2006)
Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1939–1946. IEEE (2013)
Rubio, J.C., Serrat, J., López, A., Paragios, N.: Unsupervised co-segmentation through region matching. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 749–756. IEEE (2012)
Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2217–2224. IEEE (2011)
Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: A new class of upper bounds on the log partition function. Trans. Inf. Theory 51(7), 2313–2335 (2005)
Zhang, D., Javed, O., Shah, M.: Video object co-segmentation by regulated maximum weight cliques. In: European Conference on Computer Vision, pp. 551–566. Springer (2014)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Averbuch-Elor, H., Kopf, J., Hazan, T. et al. Co-segmentation for space-time co-located collections. Vis Comput 34, 1761–1772 (2018). https://doi.org/10.1007/s00371-017-1467-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-017-1467-5