iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00366-014-0358-x
Comparative study on influencing factors in adaptive metamodeling | Engineering with Computers Skip to main content
Log in

Comparative study on influencing factors in adaptive metamodeling

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this research, influences of two factors in adaptive metamodeling, noise level of samples and initial size of samples, are investigated through comparative study. Two cases of adaptive metamodeling considering the best output point for optimization and the best fit in a specific output parameter space are considered. Three different metamodels, kriging, radial basis function, and multivariate polynomial, are employed in this study. Various test functions are used to create the sample data and evaluate the quality and efficiency of the adaptive metamodeling methods considering influences of noise and initial size of samples. The results of this research provide guidelines for selecting appropriate adaptive metamodeling methods to solve various engineering problems. Effectiveness of the developed guidelines has been demonstrated through case study applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crombecq K, Gorissen D, Deschri D, Dhaene T (2011) A novel hybrid sequential design strategy for global surrogate modeling of computer experiments. SIAM J Sci Comput 33(4):1948–1974

    Article  MATH  MathSciNet  Google Scholar 

  2. Fang KT, Li R, Sudjianto A (2006) Design and modeling for computer experiments. Chapman & Hall/CRC, FL, USA

    MATH  Google Scholar 

  3. Hardy RL (1971) Multiquadratic equations of topography and other irregular surfaces. J Geophys Res 76(1):1905–1915

    Article  Google Scholar 

  4. Hassing PM, Fang H, Wang Q (2010) Identification of material parameters for McGinty’s model using adaptive RBFs and optimization. Struct Multidisc Optim 42(2):233–242

    Article  Google Scholar 

  5. Hickernell FJ (1998) A generalized discrepancy and quadrature error bound. Math Comput 67(221):299–322

    Article  MATH  MathSciNet  Google Scholar 

  6. Hickernell FJ, Liu MQ (2002) Uniform designs limit aliasing. Biometrika 89(4):893–904

    Article  MATH  MathSciNet  Google Scholar 

  7. Jeong S, Murayama M, Yamamoto K (2005) Efficient optimization design method using kriging model. J Aircr 42(2):413–420

    Article  Google Scholar 

  8. Johnson ME, Morre LM, Ylvisaker D (1990) Minimax and maximum distance designs. J Stat Plan Inf 26(2):131–148

    Article  Google Scholar 

  9. Jones DR, Schonlau A, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492

    Article  MATH  MathSciNet  Google Scholar 

  10. Li G, Aute V, Azarm S (2010) An accumulative error based adaptive design of experiments for offline metamodeling. Struct Multidisc Optim 40(1–6):137–155

    Article  Google Scholar 

  11. Li M, Li G, Azarm S (2008) A kriging metamodel assisted multi-objective genetic algorithm for design optimization. J Mech Des ASME Trans 130(3)

  12. Lovison A, Rigoni E (2010) Adaptive sampling with a Lipschitz criterion for accurate metamodeling. Commun Appl Indus Math 1(2):110–126

    MathSciNet  Google Scholar 

  13. Matheron G (1963) Principals of geostatistics. Econ Geol 58(8):1246–1266

    Article  Google Scholar 

  14. McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MATH  MathSciNet  Google Scholar 

  15. Morris MD, Mitchell TJ (1995) Exploratory designs for computer experiments. J Stat Plan Inf 43(3):381–402

    Article  MATH  MathSciNet  Google Scholar 

  16. Mourelatos Z, Kuczera R, Latcha M (2006) An efficient Monte Carlo reliability analysis using global and local metamodels. In: Proceedings of 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, Portsmouth

  17. Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, NY, USA

    MATH  Google Scholar 

  18. Picheny V, Ginsbourger D, Roustant O, Haftka RH, Kim NH (2010) Adaptive designs of experiments for accurate approximation of a target region. J Mech Des ASME Trans 132(7)

  19. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435

    Article  MATH  MathSciNet  Google Scholar 

  20. Simpson TW, Peplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comp 17(2):129–150

    Article  MATH  Google Scholar 

  21. Sobol IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Mathem Phys 7(4):86–112

    Article  MathSciNet  Google Scholar 

  22. Villemonteix J, Vazquez E, Walter, E (2007) Identification of expensive-to-simulate parametric models using kriging and stepwise uncertainty reduction. In: Proceedings of the 46th IEEE conference on decision and control, New Orleans

  23. Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des ASME Trans 129:370–380

    Article  Google Scholar 

  24. Wang L, Shan S, Wang GG (2004) Mode-pursuing sampling method for global optimization on expensive black-box functions. Eng Optim 36(4):419–438

    Article  Google Scholar 

  25. Wei X, Wu Y, Chen L (2012) A new sequential optimal sampling method for radial basis functions. Appl Math Comput 218(19):9635–9646

    Article  MATH  MathSciNet  Google Scholar 

  26. Yang Q, Kianimanesh A, Park SS, Freiheit T, Xue D (2011) A semi-empirical model considering the influence of operating parameters on performance for a direct methanol fuel cell. J Power Sources 196(24):10640–10651

    Article  Google Scholar 

  27. Zhao D, Xue D (2010) A comparative study of metamodeling methods considering sample quality merits. Struct Multidisc Optim 42(6):923–938

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council (NSERC) of Canada through its Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyi Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Xue, D. Comparative study on influencing factors in adaptive metamodeling. Engineering with Computers 31, 561–577 (2015). https://doi.org/10.1007/s00366-014-0358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0358-x

Keywords

Navigation