iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00246-018-1998-1
The Case for Cardiac Xenotransplantation in Neonates: Is Now the Time to Reconsider Xenotransplantation for Hypoplastic Left Heart Syndrome? | Pediatric Cardiology Skip to main content

Advertisement

Log in

The Case for Cardiac Xenotransplantation in Neonates: Is Now the Time to Reconsider Xenotransplantation for Hypoplastic Left Heart Syndrome?

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Neonatal cardiac transplantation for hypoplastic left heart syndrome (HLHS) is associated with excellent long-term survival compared to older recipients. However, heart transplantation for neonates is greatly limited by the critical shortage of donor hearts, and by the associated mortality of the long pre-transplant waiting period. This led to the development of staged surgical palliation as the first-line surgical therapy for HLHS. Recent advances in genetic engineering and xenotransplantation have provided the potential to replicate the excellent results of neonatal cardiac allotransplantation while eliminating wait-list-associated mortality through genetically modified pig-to-human neonatal cardiac xenotransplantation. The elimination of the major pig antigens in addition to the immature B-cell response in neonates allows for the potential to induce B-cell tolerance. Additionally, the relatively mature neonatal T-cell response could be reduced by thymectomy at the time of operation combined with donor-specific pig thymus transplantation to “reprogram” the host’s T-cells to recognize the xenograft as host tissue. In light of the recent significantly increased graft survival of genetically-engineered pig-to-baboon cardiac xenotransplantation, we propose that now is the time to consider devoting research to advance the potential clinical application of cardiac xenotransplantation as a treatment option for patients with HLHS. Employing cardiac xenotransplantation could revolutionize therapy for complex congenital heart defects and open a new chapter in the field of pediatric cardiac transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GEP:

Genetically engineered pig

GTKO:

α1,3-Galactosyltansferase gene-knockout

HLHS:

Hypoplastic left heart syndrome

NHP:

Nonhuman primate

References

  1. Bailey LL, Jang J, Johnson W, Jolley WB (1985) Orthotopic cardiac xenografting in the newborn goat. J Thorac Cardiovasc Surg 89:242–247

    PubMed  CAS  Google Scholar 

  2. Bailey LL, Nehlsen-Cannarella SL, Concepcion W, Jolley WB (1985) Baboon-to-human cardiac xenotransplantation in a neonate. J Am Med Assoc 254:3321–3329

    Article  CAS  Google Scholar 

  3. Bailey LL (2009) The evolution of infant heart transplantation. J Heart Lung Transplant 28:1241–1245

    Article  PubMed  Google Scholar 

  4. Norwood WI, Lang P, Hansen DD (1983) Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N Engl J Med 308:23–26

    Article  PubMed  CAS  Google Scholar 

  5. Wilder TJ, McCrindle BW, Hickey EJ, Ziemer G, Tchervenkov CI, Jacobs ML, Gruber PJ, Blackstone EH, Williams WG, DeCampli WM, Caldarone CA, Pizarro C (2017) Congenital Heart Surgeons’ Society. Is a hybrid strategy a lower risk alternative to stage 1 Norwood palliation? J Thorac Cardiovasc Surg 153:163–172

    Article  PubMed  Google Scholar 

  6. Newburger JW, Sleeper LA, Frommelt PC, Pearson GD, Mahle WT, Chen S, Dunbar-Masterson C, Mital S, Williams IA, Ghanayem NS, Goldberg CS, Jacobs JP, Krawczeski CD, Lewis AB, Pasquali SK, Pizarro C, Gruber PJ, Atz AM, Khaikin S, Gaynor JW, Ohye RG (2014) Transplantation-free survival and interventions at 3 years in the single ventricle reconstruction trial. Circulation 129:2013–2020

    Article  PubMed  Google Scholar 

  7. Hsu DT, Lamour JM (2015) Changing indications for pediatric heart transplant. Circulation 131:91–99

    Article  PubMed  Google Scholar 

  8. Feinstein JA, Benson DW, Dubin AM, Cohen MS, Maxey DM, Mahle WT, Pahl E, Villafane J, Bhatt AB, Peng LF, Johnson BA, Marsden AL, Daniels CJ, Rudd NA, Caldarone CA, Mussatto KA, Morales DL, Ivy DD, Gaynor JW, Tweddell JS, Deal BJ, Furck AK, Rosenthal GL, Ohye RG, Ghanayem NS, Cheatham JP, Tworezky W, Martin GR (2012) Hypoplastic left heart syndrome current considerations and expectations. J Am Coll Cardiol 59(1 Suppl):S1–S42

    Article  PubMed  Google Scholar 

  9. Chinnock RE, Bailey LL (2011) Heart transplantation for congenital heart disease in the first year of life. Curr Cardiol Rev 7:72–84

    Article  PubMed  Google Scholar 

  10. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey B, Meiser B, Rossano JW, Chambers DC, Yusen RD, Stehlik J, International Society for Heart and Lung Transplantation (2017) The registry of the international society for heart and lung transplantation: thirty-fourth adult heart transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant 36(10):1037–1046

    Article  PubMed  Google Scholar 

  11. Everitt MD, Boyle GJ, Schechtman KB, Zheng J, Bullock EA, Kaza AK, Dipchand AI, Naftel DC, Kirklin JK, Canter CE (2012) Early survival after heart transplant in young infants is lowest after failed single-ventricle palliation: a multi-institutional study. J Heart Lung Transplant 31:509–516

    Article  PubMed  Google Scholar 

  12. Almond CS, Gauvreau K, Thiagarajan RR, Piercey GE, Blume ED, Smoot LB, Fynn-Thompson F, Singh TP (2010) Impact of ABO-incompatible listing on wait-list outcomes among infants listed for heart transplantation in the United States. Circulation 121:1926–1933

    Article  PubMed  Google Scholar 

  13. Polluck SM, McCrindle BW, West LJ, Manlhiot C, VanderVliet M, Dipchand AI (2007) Competing outcomes after neonatal and infant wait-listing for heart transplantation. J Heart Lung Transplant 26:980–985

    Article  Google Scholar 

  14. Jeewa A, Manlhiot C, Kantor PF, Mital S, McCrindle BW, Dipchand AI (2014) Risk factors for mortality or delisting of patients from the pediatric heart transplant waiting list. J Thorac Cardiovasc Surg 147:462–468

    Article  PubMed  Google Scholar 

  15. Jenkins PC, Flanagan MF, Sargent JD, Canter CE, Chinnock RE, Jenkins KJ, Vincent RN, O’Connor GT, Tosteson ANA (2001) A comparison of treatment strategies for hypoplastic left heart syndrome using decision analysis. J Am Coll Cardiol 38:1181–1187

    Article  PubMed  CAS  Google Scholar 

  16. Jenkins PC, Flanagan MF, Jenkins KJ, Sargent JD, Cantor CE, Chinnock RE, Vincent RN, Tosteson ANA, O’Connor GT (2000) Survival analysis and risk factors for mortality in transplantation and staged surgery for hypoplastic left heart syndrome. J Am Coll Cardiol 36:1178–1185

    Article  PubMed  CAS  Google Scholar 

  17. Petroski RA, Grady KL, Rodgers S, Backer CL, Kulikowska A, Canter C, Pah E (2009) Quality of life in adult survivors greater than 10 years after pediatric heart transplantation. J Heart Lung Transplant 28:661–666

    Article  PubMed  Google Scholar 

  18. Uzark K, Griffin L, Rodriguez R, Zamberlan M, Murphy P, Nasman C, Dupuis J, Rodgers S, Limbers CA, Varni JW (2012) Quality of life in pediatric heart transplant recipients: a comparison with children with and without heart disease. J Heart Lung Transplant 31:571–578

    Article  PubMed  Google Scholar 

  19. Alsoufi B, Deshpande S, McCracken C, Kogon B, Vincent R, Mahle W, Kantar K (2015) Results of heart transplantation following failed staged palliation of hypoplastic left heart syndrome and related single ventricle anomalies. Eur J Cardiothorac Surg 48:792–799

    Article  PubMed  Google Scholar 

  20. Kulkarni A, Neugebauer R, Lo Y, Gao Q, Lamour JM, Weinstein S, Hsu DT (2016) Outcomes and risk factors for heart transplant after Norwood procedure: an analysis of the single ventricle reconstruction trial. J Heart Lung Transplant 35:306–311

    Article  PubMed  Google Scholar 

  21. Itkin MG, McCormack FX, Dori Y (2016) Diagnosis and treatment of lymphatic plastic bronchitis in adults using advanced lymphatic imaging and percutaneous imaging. Ann Am Thorac Soc 13:1689–1696

    PubMed  Google Scholar 

  22. Pundi KN, Johnson JN, Dearani JA, Pundi KN, Li Z, Hinck CA, Dahl SH, Cannon BC, O’Leary PW, Driscoll DJ, Cetta F (2015) 40-year follow-up after the Fontan operation: long-term outcomes of 1,052 patients. J Am Coll Cardiol 66:1700–1710

    Article  PubMed  Google Scholar 

  23. Atz AM, Zak V, Mahony L, Uzark K, D’agincourt N, Goldberg DJ, Williams RV, Breitbart RE, Colan SD, Burns KM, Margossian R, Henderson HT, Korsin R, Marino BS, Daniels K, McCrindle BW (2017) Longitudinal outcomes of patients with single ventricle after Fontan procedure. J Am Coll Cardiol 69:2735–2744

    Article  PubMed  Google Scholar 

  24. Ohye RG, Schranz D, D’Udekem Y (2016) Current therapy for hypoplastic left heart syndrome and related single ventricle lesions. Circulation 134:1265–1279

    Article  PubMed  Google Scholar 

  25. Simpson KE, Pruitt E, Kirklin JK, Naftel DC, Singh RK, Edens RE, Barnes AP, Canter CE (2017) Fontan patient survival after pediatric heart transplantation has improved in the current era. Ann Thorac Surg 103:1315–1320

    Article  PubMed  Google Scholar 

  26. Hornik CP, Xia He MS, Jacobs JP, Li JS, Jaquiss RDB, Jacobs ML, O’Brien SM, Peterson ED, Pasquali SK (2011) Complications after the Norwood operation: an analysis of the STS Congenital Heart Surgery Database. Ann Thorac Surg 92:1734–1740

    Article  PubMed  Google Scholar 

  27. Wilder TJ, McCrindle BW, Phillips AB, Blackstone EH, Rajeswaran J, Williams WG, DeCampli WG, Jacobs JP, Jacobs ML, Karamlou T, Kirshbom PM, Lofland GK, Ziemer G, Hickey EJ (2015) Survival and right ventricular performance for matched children after stage-1 Norwood: modified Blalock-Taussig shunt versus right-ventricle-to-pulmonary-artery conduit. J Thorac Cardiovasc Surg 150:1440–1452

    Article  PubMed  Google Scholar 

  28. Voeller RK, Epstein DJ, Guthrie TJ, Gandhi SK, Canter CE, Huddleston CB (2012) Trends in the indications and survival in pediatric heart transplants: a 24-year single-center experience in 307 patients. Ann Thorac Surg 94:807–816

    Article  PubMed  Google Scholar 

  29. Conway J, Manlhiot C, Kirk R, Edwards LB, McCrindle BW, Dipchand AI (2014) Mortality and morbidity after retransplantation after primary heart transplant in childhood: an analysis from the registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 33:241–251

    Article  PubMed  Google Scholar 

  30. Goldberg CS, Mussatto K, Licht D, Wernovsky G (2011) Neurodevelopment and quality of life for children with hypoplastic left heart syndrome: current knowns and unknowns. Cardiol Young 21(2 Suppl):88–92

    Article  PubMed  Google Scholar 

  31. Gobergs R, Salputra E, Lubaua I (2016) Hypoplastic left heart syndrome: a review. Acta Med Litu 23:86–98

    PubMed  PubMed Central  Google Scholar 

  32. Dean PN, Hillman DG, McHugh KE, Gutgesell HP (2011) Inpatient costs and charges for surgical treatment of hypoplastic left heart syndrome. Pediatrics 128:e1181–e1186

    Article  PubMed  Google Scholar 

  33. Good AH, Cooper DK, Malcolm AJ, Ippolito RM, Koren E, Neethling FA, Ye Y, Zuhdi N, Lamontagne LR (1992) Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant Proc 24:559–562

    PubMed  CAS  Google Scholar 

  34. Cooper DK, Good AH, Koren E, Oriol R, Malcolm AJ, Ippolito RM, Neethling FA, Ye Y, Romano E, Zuhdi N (1993) Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol 1:198–205.

    Article  PubMed  CAS  Google Scholar 

  35. Galili U, Mandrell RE, Hamadeh RM, Shohet SB, McLeod Griffiss J (1988) Interaction between human natural anti-α-galactosyl immunoglogulin G and bacteria of the human flora. Infect Immun 56:1730–1737.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Lexer G, Cooper DK, Rose AG, Wicomb WN, Rees J, Keraan M, Du Toit E (1986) Hyperacute rejection in a discordant (pig to baboon) cardiac xenograft model. J Heart Transplant 5:411–418

    PubMed  CAS  Google Scholar 

  37. Cooper DKC, Human PA, Lexer G, Rose AG, Rees J, Keraan M, Du Toit E (1988) Effects of cyclosporine and antibody adsorption on pig cardiac xenograft survival in the baboon. J Heart Transplant 7:238–246

    PubMed  CAS  Google Scholar 

  38. Cooper DKC, Ekser B, Ramsoondar J, Phelps C, Ayares D (2016) The role of genetically-engineered pigs in xenotransplantation research. J Pathol 238:288–299.

    Article  PubMed  Google Scholar 

  39. Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R (2016) The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 23:83–105

    Article  PubMed  Google Scholar 

  40. Mohiuddin MM, Reichart B, Byrne GW, McGregor CGA (2015) Current status of pig heart xenotransplantation. Int J Surg 23(Pt B):234–237

    Article  PubMed  Google Scholar 

  41. Kaplon RJ, Michler RE, Xu H, Kwiatkowski PA, Edwards NM, Platt JL (1995) Absence of hyperacute rejection in newborn pig-to-baboon cardiac xenografts. Transplantation 59:1–6

    Article  PubMed  CAS  Google Scholar 

  42. Xu H, Edwards NM, Chen JM, Dong X, Michler RE (1995) Natural antipig xenoantibody is absent in neonatal human serum. J Heart Lung Transplant 14:749–754

    PubMed  CAS  Google Scholar 

  43. Minanov OP, Itescu S, Neethling FA, Morgenthau AS, Kwiatkowski P, Cooper DKC, Michler RE (1997) Anti-Gal IgG antibodies in sera of newborn humans and baboons and its significance in pig xenotransplantation. Transplantation 63:182–186

    Article  PubMed  CAS  Google Scholar 

  44. Neethling FA, Cooper DKC, Xu H, Michler RE (1995) Newborn baboon serum anti-αgalactosyl antibody levels and cytotoxicity to cultured pig kidney (PK15) cells. Transplantation 60:520–521

    Article  PubMed  CAS  Google Scholar 

  45. Rood PP, Tai HC, Hara H, Long C, Ezzelarab M, Lin YJ, Van Der Windt DJ, Busch J, Ayares D, Ijzermans JN, Wolf RF (2007) Late onset of development of natural anti-nonGal antibodies in infant humans and baboons: implications for xenotransplantation in infants. Transpl Int 20:1050–1058

    Article  PubMed  Google Scholar 

  46. Dons EM, Montoya C, Long C, Hara H, Echeverri GJ, Ekser B, Ezzelarab C, Medellin DR, van der Windt DJ, Murase N, Rigatti L, Wagner R, Wolf RF, Ezzelarab M, West LJ, Ijzermans JNM, Cooper DKC (2012) T cell-based immunosuppressive therapy inhibits the development of natural antibodies in infant baboons. Transplantation 93:769–776.

    Article  PubMed  CAS  Google Scholar 

  47. West LJ, Pollock-Barziv SM, Dipchand AI, Lee KJ, Cardella CJ, Benson LN, Rebeyka IM, Coles JG (2001) ABO-incompatible heart transplantation in infants. N Engl J Med 344:793–800

    Article  PubMed  CAS  Google Scholar 

  48. Urschel S, Larsen IM, Kirk R, Flett J, Burch M, Shaw N, Birnbaum J, Netz H, Pahl E, Matthews KL, Chinnock R, Johnston JK, Derkatz K, West LJ (2013) ABO-incompatible heart transplantation in early childhood: an international multicenter study of clinical experiences and limits. J Heart Lung Transplant 32:285–392

    Article  PubMed  Google Scholar 

  49. Urschel S, West LJ (2016) ABO-incompatible heart transplantation. Curr Opin Pediatr 28:613–619

    Article  PubMed  CAS  Google Scholar 

  50. Phelps CJ, Ball SF, Vaught TD, Vance AM, Mendicino M, Monahan JA, Walters AH, Wells KD, Dandro AS, Ramsoondar JJ, Cooper DKC, Ayares D (2009) Production and characterization of transgenic pigs expressing porcine CTLA4-Ig. Xenotransplantation 16:477–485

    Article  PubMed  Google Scholar 

  51. Hara H, Witt W, Crossley T, Long C, Isse K, Fan L, Phelps CJ, Ayares D, Cooper DK, Dai Y, Starzl TE (2013) Human dominant-negative class II transactivator transgenic pigs—effect on the human anti-pig T-cell immune response and immune status. Immunology 140:39–46

    Article  PubMed  CAS  Google Scholar 

  52. Iwase H, Ekser B, Satyananda V, Zhou H, Hara H, Bajona P, Wijkstrom M, Bhama JK, Long C, Veroux M, Wang Y, Dai Y, Phelps C, Ayares D, Ezzelarab MB, Cooper DKC (2015) Initial in vivo experience of pig artery patch transplantation in baboons using mutant MHC (CIITA-DN) pigs. Transpl Immunol 32:99–108.

    Article  PubMed  CAS  Google Scholar 

  53. Pan H, Gazarian A, Dubernard JM, Belot A, Michallet MC, Michallet M (2016) Transplant tolerance induction in newborn infants: mechanisms, advantages, and potential strategies. Front Immunol 7:116

    Article  PubMed  Google Scholar 

  54. Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas ML 3rd, Ayares D, Horvath KA (2014) Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg 148:1106–1113 (Discussion 1113–1104)

    Article  PubMed  Google Scholar 

  55. Mohiuddin MM, Singh AK, Corcoran PC, Thomas ML 3rd, Clark T, Lewis BG, Hoyt RF, Eckhaus M, Pierson RN 3rd, Belli AJ, Wolf E, Klymiuk N, Phelps C, Reimann KA, Ayares D, Horvath KA (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138

    Article  PubMed  CAS  Google Scholar 

  56. Eysteinsdottir JH, Freysdottir J, Haraldsson A, Stefansdottir J, Skaftadottir I, Helgason H, Ogmundsdottir H (2004) The influence of partial or total thymectomy during open heart surgery in infants on the immune function later in life. Clin Exp Immunol 136:349–355

    Article  PubMed  CAS  Google Scholar 

  57. Halnon NJ, Jamieson B, Plunkett M, Kitchen CMR, Pham T, Krogstad P (2005) Thymic function and impaired maintenance of peripheral T-cell populations in children with congenital heart disease and surgical thymectomy. Pediatr Res 57:42–48

    Article  PubMed  Google Scholar 

  58. Appay V, Sauce D, Prelog M (2010) The role of the thymus in immunosenescence: lessons from the study of thymectomized individuals. Aging (Albany NY) 2:78–81

    Article  CAS  Google Scholar 

  59. Ogle BM, West LJ, Driscoll DJ, Strome SE, Razonable RR, Paya CV, Cascalho M, Platt JL (2006) Effacing of the T cell compartment by cardiac transplantation in infancy. J Immunol 176:1962–1967

    Article  PubMed  CAS  Google Scholar 

  60. Van den Broek T, Madi A, Delemarre EM, Schadenberg AWL, Tesselaar K, Borghans JAM, Nierkens S, Redegeid FA, Otten HG, Rossetti M, Albani S, Sorek R, Cohen IR, Jansen NJG, van Wijk F (2017) Human neonatal thymectomy induces altered B-cell responses and autoreactivity. Eur J Immunol 47:1970–1981

    Article  PubMed  Google Scholar 

  61. Yamada K, Scalea J (2012) Thymic transplantation in pig-to-nonhuman primates for the induction of tolerance across xenogeneic barriers. Methods Mol Biol 885:191–212

    Article  PubMed  CAS  Google Scholar 

  62. Chinn IK, Devlin BH, Li YJ, Markert ML (2008) Long-term tolerance to allogeneic thymus transplants in complete DiGeorge anomaly. Clin Immunol 126:277–2781

    Article  PubMed  CAS  Google Scholar 

  63. Markert ML, Devlin BH, McCarthy EA (2010) Thymus transplantation. Clin Immunol 135:236–246

    Article  PubMed  CAS  Google Scholar 

  64. Lee JH, Markert ML, Hornik CP, McCarthy EA, Gupton SE, Cheifetz IM, Turner DA (2014) Clinical course and outcome predictors of critically ill infants with complete DiGeorge anomaly following thymus transplantation. Pediatr Crit Care Med 15:e321–e326

    Article  PubMed  Google Scholar 

  65. Yamada K, Gianello PR, Ierino FL, Lorf T, Shimizu A, Meehan S, Colvin RB, Sachs DH (1997) Role of the thymus in transplantation tolerance in miniature swine. I. Requirement of the thymus for rapid and stable induction of tolerance to class I-mismatched renal allografts. J Exp Med 186:497–506

    Article  PubMed  CAS  Google Scholar 

  66. Johnston DR, Muniappan A, Hoerbelt R, Guenther DA, Shoji T, Houser SL, Sachs DH, Madsen JC (2005) Heart and en-bloc thymus transplant in miniature swine. J Thorac Cardiovasc Surg 130:554–559

    Article  PubMed  Google Scholar 

  67. Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172(4379):603–606

    Article  PubMed  CAS  Google Scholar 

  68. Wilson WM, Valente AM, Hickey EJ, Clift P, Burchill L, Emmanuel Y, Gibson P, Greutmann M, Grewal J, Grigg LE, Gurvitz M, Hickey KBA, Khairy P, Mayer JE, Teo E, Muhll IV, Roche SL, Silversides C, Wald R (2018) Outcomes of patients with hypoplastic left heart syndrome reaching adulthood after Fontan palliation: multicenter study. Circulation 137:978–981

    Article  PubMed  Google Scholar 

  69. Mahle W, Hu CMS, Trachtenberg F, Menteer JD, Kindel SJ, Dipchand A, Richmond M, Daly K, Henderson HT, Lin KY, McCulloch M, Lal AK, Schumacher K, Jacobs J, Atz AM, Villa C, Burns KM, Newburger JW, Pediatric Heart Network Investigators (2018) Heart failure after the Norwood procedure: an analysis of the Single Ventricle Reconstruction Trial. J Heart Lung Transplant 37:879–885

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Leonard Bailey, MD, and James Fitts from the Department of Pediatric Cardiovascular Surgery, Loma Linda University International Heart Institute, Loma Linda, CA, for generously providing their current data to us. C.A.B. thanks the UAB School of Medicine and the Department of Surgery for funding that enabled him to participate in the preparation of this manuscript. Work on xenotransplantation at the University of Alabama at Birmingham is supported in part by NIH NIAID U19 Grant AI090959.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cleveland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article is a review of the literature and does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleveland, D., Adam Banks, C., Hara, H. et al. The Case for Cardiac Xenotransplantation in Neonates: Is Now the Time to Reconsider Xenotransplantation for Hypoplastic Left Heart Syndrome?. Pediatr Cardiol 40, 437–444 (2019). https://doi.org/10.1007/s00246-018-1998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-018-1998-1

Keywords

Navigation