iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00239-004-0349-4
The Evolution of Microbial Phosphonate Degradative Pathways | Journal of Molecular Evolution Skip to main content

Advertisement

Log in

The Evolution of Microbial Phosphonate Degradative Pathways

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Phosphonate utilization by microbes provides a potential source of phosphorus for their growth. Homologous genes for both C–P lyase and phosphonatase degradative pathways are distributed in distantly related bacterial species. The phn gene clusters for the C–P lyase pathway show great structural and compositional variation among organisms, but all contain phnG–phnM genes that are essential for C–P bond cleavage. In the γ-proteobacterium Erwinia carotovora, genes common to phosphonate biosyntheses were found in neighboring positions of those for the C–P lyase degradative pathway and in the same transcriptional direction. A gene encoding a hypothetical protein DUF1045 was found predominantly associated with the phn gene cluster and was predicted functionally related to C–P bond cleavage. Genes for phosphonate degradation are frequently located in close proximity of genes encoding transposases or other mobile elements. Phylogenetic analyses suggest that both degradative pathways have been subject to extensive lateral gene transfers during their evolution. The implications of plasmids and transposition in the evolution of phosphonate degradation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  Google Scholar 

  • Chen WM, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  PubMed  Google Scholar 

  • Cook AM, Daughton CG, Alexander M (1978) Phosphonate utilization by bacteria. J Bacteriol 133:85–90

    PubMed  Google Scholar 

  • Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol 157:525–537

    Article  Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogenetic Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Hilderbrand RL, Henderson TO (1983) Phosphonic acids in nature. In: Hilderbrand RL (ed) The role of phosphonates in living systems. CRC Press, Boca Raton, FL, pp 5–29

    Google Scholar 

  • Itoh T, Takemoto K, Mori H, Gojobori T (1999) Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol 16:332–346

    PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  Google Scholar 

  • Kononova SV, Nesmeyanova MA (2002) Phosphonates and their degradation by microorganisms. Biochemistry (Moscow) 67:184–195

    Article  Google Scholar 

  • Koski LB, Morton RA, Golding GB (2001) Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol 18:404–412

    PubMed  Google Scholar 

  • Krzysko-Lupicka T, Strof W, Kubs K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48:549–552

    Article  PubMed  Google Scholar 

  • Kulakova AN, Kulakov LA, Quinn JP (1997) Cloning of the phosphonoacetate hydrolase gene from Pseudomonas fluorescens 23F encoding a new type of carbon–phosphorus bond cleaving enzyme and its expression in Escherichia coli and Pseudomonas putida. Gene 195:49–53

    Article  PubMed  Google Scholar 

  • Kulakova AN, Kulakov LA, Akulenko NV, Ksenzenko VN, Hamilton JTG, Quinn JP (2001) Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseud,omonas fluorescens 2F. J Bacteriol 183:3268–3275

    Article  PubMed  Google Scholar 

  • Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860

    PubMed  Google Scholar 

  • Lee KS, Metcalf WW, Wanner BL (1992) Evidence for two phosphonate degradative pathways in Enterobacter aerogenes. J Bacteriol 174:2501–2510

    PubMed  Google Scholar 

  • Liu Y, Harrison PM, Kunin V, Gerstein M (2004) Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 5:R64

    Article  PubMed  Google Scholar 

  • Logsdon JM, Faguy DM (1999) Thermotoga heats up lateral gene transfer. Curr Biol 9:R747–R751

    Article  PubMed  Google Scholar 

  • McGrath JW, Kulakova AN, Quinn JP (1999) A comparison of three bacterial phosphonoacetate hydrolases from different environmental sources. J Appl Microbiol 86:834–840

    Article  Google Scholar 

  • Metcalf WW, Wanner BL (1993) Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA’ elements. J Bacteriol 175:3430–3442

    PubMed  Google Scholar 

  • Obojska A, Lejczak B (2003) Utilisation of structurally diverse organophosphonates by Streptomycetes. Appl Microbiol Biotechnol 62:557–563

    Article  PubMed  Google Scholar 

  • Ochman H, Jones IB (2000) Evolutionary dynamics of full genome content in Escherichia coli. EMBO J 19:6637–6643

    Article  PubMed  Google Scholar 

  • Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099

    Article  PubMed  Google Scholar 

  • Ochman H, Lawence JG, Groisman EA (2000). Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  Google Scholar 

  • Omelchenko MV, Makarova KS, Wolf YI, Rogozin IB, Koonin EV (2003) Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 4:R55

    Article  PubMed  Google Scholar 

  • Parker GF, Higgins TP, Hawkes T, Robson RL (1999) Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products. J Bacteriol 181:389–395

    PubMed  Google Scholar 

  • Ragan MA (2001) On surrogate methods for detecting lateral gene transfer. FEMS Microbiol Lett 201:187–191

    Article  PubMed  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, Haeseler A (2002) TREE–PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  Google Scholar 

  • Schowanek D, Verstraete W (1990) Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl Environ Microbiol 56:895–903

    PubMed  Google Scholar 

  • Schwartz D, Recktenwald J, Pelzer S, Wohlleben W (1998) Isolation and characterization of the PEP-phosphomutase and the phophonopyruvate decarboxylase genes from the phosphinothricin tripeptide producer Streptomyces viridochromogenes Tu494. FEMS Microbiol Lett 163:149–157

    Article  PubMed  Google Scholar 

  • Scott JR (1992) Sex and the single circle: conjugative transposition. J. Bacteriol 174:6005–6010

    PubMed  Google Scholar 

  • Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus limitation of costal ecosystem processes. Science 299:563–565

    Article  PubMed  Google Scholar 

  • Tauxe RV, Cavanagh TR, Cohen ML (1989) Interspecies gene transfer in vivo producing an outbreak of multiply resistant shigellosis. J Infect Dis 160:1067–1070

    PubMed  Google Scholar 

  • Ternan NG, McGrath JW, McMullan G, Quinn JP (1998) Organophosphonates: occurrence, synthesis and biodegradation by microorganisms. World J Microbiol Biotech 14:635–647

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  Google Scholar 

  • Wanner BL, Boline JA (1990) Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli. J Bacteriol 172:1186–1196

    PubMed  Google Scholar 

  • Wanner BL, Metcalf WW (1992) Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol Lett 15:133–139

    Article  Google Scholar 

  • White AK, Metcalf WW (2004) Two C–P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite. J Bacteriol 186:4730–4739

    Article  PubMed  Google Scholar 

  • Wilson MM, Metcalf WW (2005) Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072. Appl Environ Microbiol 71:290–296

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Anna Karls for discussions and two anonymous reviewers for helpful comments and suggestions. This research was supported in part by the U.S. Department of Energy’s Genomes to Life program (http://doegenomestolife.org), under the project “Carbon Sequestration in Synechococcus sp.: From Molecular Machines to Hierarchical Modeling” (http://www.genomes2life.org), and also by the National Science Foundation (Grants NSF/DBI-0354771 and NSF/ITR-IIS-0407204).

Author information

Authors and Affiliations

Authors

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Su, Z. & Xu, Y. The Evolution of Microbial Phosphonate Degradative Pathways. J Mol Evol 61, 682–690 (2005). https://doi.org/10.1007/s00239-004-0349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0349-4

Keywords

Navigation