iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00224-015-9649-x
On the Advice Complexity of the k-server Problem Under Sparse Metrics | Theory of Computing Systems Skip to main content
Log in

On the Advice Complexity of the k-server Problem Under Sparse Metrics

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We consider the k-Server problem under the advice model of computation when the underlying metric space is sparse. On one side, we introduce Θ(1)-competitive algorithms for a wide range of sparse graphs. These algorithms require advice of (almost) linear size. We show that for graphs of size N and treewidth α, there is an online algorithm that receives O (n(log α + log log N))* bits of advice and optimally serves any sequence of length n. We also prove that if a graph admits a system of μ collective tree (q, r)-spanners, then there is a (q + r)-competitive algorithm which requires O (n(log μ + log log N)) bits of advice. Among other results, this gives a 3-competitive algorithm for planar graphs, when provided with O (n log log N) bits of advice. On the other side, we prove that advice of size Ω(n) is required to obtain a 1-competitive algorithm for sequences of length n even for the 2-server problem on a path metric of size N ≥ 3. Through another lower bound argument, we show that at least \(\frac {n}{2}(\log \alpha - 1.22)\) bits of advice is required to obtain an optimal solution for metric spaces of treewidth α, where 4 ≤ α < 2k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bartal, Y., Koutsoupias, E.: On the competitive ratio of the work function algorithm for the k-server problem. Theor. Comput. Sci. 324, 337–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bein, W., Chrobak, M., Larmore, L.L.: The 3-server problem in the plane. Theor. Comput. Sci. 287, 387–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bein, W., Iwama, K., Kawahara, J., Larmore, L.L., Oravec, J.A.: A randomized algorithm for two servers in cross polytope spaces. Theor. Comput. Sci. 412(7), 563–572 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianchi, M.P., Böckenhauer, H., Hromkovič, J., Keller, L.: Online coloring of bipartite graphs with and without advice. Algorithmica 70(1), 92–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bianchi, M.P., Böckenhauer, H., Hromkovič, J., Krug, S., Steffen, B.: On the advice complexity of the online L(2,1)-coloring problem on paths and cycles. Theor. Comput. Sci 554, 22–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Böckenhauer, H., Komm, D., Královič, R., Rossmanith, P.: The online knapsack problem: Advice and randomization. Theor. Comput. Sci. 527, 61–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Böckenhauer, H.J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing problem as a method to prove lower bounds on the advice complexity. Theor. Comput. Sci. 554, 95–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böckenhauer, H.J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the k-server problem. In: Proceedings of the 38th International Colloquium on Automata, Languages and Programming (ICALP), LNCS, vol. 6755, pp. 207–218 (2011)

  9. Böckenhauer, H.J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC), LNCS, vol. 5878, pp. 331–340 (2009)

  10. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet. 11, 1–23 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: On the list update problem with advice. In: Proceedings of the 8th International Conference on Language and Automata Theory (LATA) (2014)

  12. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice. In: Proceedings of the 31st Symposium on Theoretical Aspects of Computer Science (STACS) (2014)

  13. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New results on server problems. SIAM J. Discret. Math. 4, 172–181 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chrobak, M., Larmore, L.L.: An optimal online algorithm for k-servers on trees. SIAM J. Comput. 20, 144–148 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coppersmith, D., Doyle, P.G., Raghavan, P., Snir, M.: Random walks on weighted graphs and applications to on-line algorithms. J. ACM 40, 421–453 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dobrev, S., Královic, R., Markou, E.: Online graph exploration with advice. In: Proceedings of 19th International Colloquium on Structural Information and Communication Complexity (SIROCCO), LNCS, vol. 7355, pp. 267–278 (2012)

  17. Dobrev, S., Královič, R., Pardubskȧ, D.: How much information about the future is needed? In: Proceedings of the 34th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), LNCS, vol. 4910, pp. 247–258 (2008)

  18. Dragan, F.F., Yan, C., Corneil, D.G.: Collective tree spanners and routing in at-free related graphs. J. Graph Algorithm. Appl. 10(2), 97–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J. Discret. Math. 20(1), 241–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farzan, A., Kamali, S.: Compact navigation and distance oracles for graphs with small treewidth. In: Proceedings of the 38th International Colloquium on Automata, Languages and Programming (ICALP), LNCS, vol. 6755, pp. 268–280 (2011)

  22. Forišek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths. In: Proceedings of the 6th International Conference on Language and Automata Theory (LATA), LNCS, vol. 7183, pp. 228–239 (2012)

  23. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a pez dispenser (or, routing issues in mpls). SIAM J. Comput. 34(2), 453–474 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gupta, S., Kamali, S., López-Ortiz, A.: On advice complexity of the k-server problem under sparse metrics. In: Proceedings of the 20th International Colloquium on Structural Information and Communication Complexity (SIROCCO). LNCS (2013)

  25. Halin, R.: S-functions for graphs. J. Geom. 8(1-2), 171–186 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Proceedings of the 35th International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS, vol. 6281, pp. 24–36 (2010)

  27. Karlin, A., Manasse, M., McGeoch, L., Owicki, S.: Randomized competitive algorithms for non-uniform problems. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 301–309 (1990)

  28. Karlin, A., Manasse, M., McGeoch, L., Owicki, S.: Competitive randomized algorithms for nonuniform problems. Algorithmica 11, 542–571 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Komm, D., Královič, R.: Advice complexity and barely random algorithms. In: Proceedings of the 37th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), LNCS, vol. 6543, pp. 332–343 (2011)

  30. Komm, D., Královic, R., Mömke, T.: On the advice complexity of the set cover problem. In: Proceedings of the 7th International Computer Science Symposium in Russia (CSR), LNCS, vol. 7353, pp. 241–252 (2012)

  31. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture. J. ACM 42, 971–983 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Koutsoupias, E., Papadimitriou, C.: The 2-evader problem. Inf. Process. Lett. 57, 249–252 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Manasse, M.S., McGeoch, L., Sleator, D.D.: Competitive algorithms for on-line problems. In: Proceedings of the 20th ACM Symposium on Theory of Computing (STOC), pp. 322–333 (1988)

  34. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server problems. J. Algorithm. 11(2), 208–230 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Matousek, J.: On embedding trees into uniformly convex banach spaces. Israel J. Math. 114, 221–237 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server problem. In: Proceedings of the 9th Workshop on Approximation and Online Algorithms (WAOA), LNCS, vol. 7164, pp. 198–210 (2011)

  37. Robertson, N., Seymour, P.D.: Graph minors. iii. planar tree-width. Journal of Combinatorial Theory. Ser. B 36(1), 49–64 (1984)

    MathSciNet  MATH  Google Scholar 

  38. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring problem. In: Proceedings of the 8th International Conference on Algorithms and Complexity (CIAC), LNCS, vol. 7878, pp. 345–357 (2013)

  39. Yan, C., Xiang, Y., Dragan, F.F.: Compact and low delay routing labeling scheme for unit disk graphs. Comput. Geom. 45(7), 305–325 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the useful reviews by the anonymous reviewers on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Kamali.

Additional information

Preliminary version of this paper appeared in the Proceedings of the International Colloquium on Structural Information and Communication Complexity, SIROCCO’13 [24].

*We use log x to denote log2(x).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Kamali, S. & López-Ortiz, A. On the Advice Complexity of the k-server Problem Under Sparse Metrics. Theory Comput Syst 59, 476–499 (2016). https://doi.org/10.1007/s00224-015-9649-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-015-9649-x

Keywords

Navigation