iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00224-011-9337-4
Simple Wriggling is Hard Unless You Are a Fat Hippo | Theory of Computing Systems Skip to main content
Log in

Simple Wriggling is Hard Unless You Are a Fat Hippo

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We prove that it is NP-hard to decide whether two points in a polygonal domain with holes can be connected by a wire. This implies that finding any approximation to the shortest path for a long snake amidst polygonal obstacles is NP-hard. On the positive side, we show that snake’s problem is “length-tractable”: if the snake is “fat”, i.e., its length/width ratio is small, the shortest path can be computed in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM Comput. Surv. 30, 412–458 (1998)

    Article  Google Scholar 

  2. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. SIAM J. Comput. 29(3), 912–953 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alterovitz, R., Branicky, M.S., Goldberg, K.Y.: Motion planning under uncertainty for image-guided medical needle steering. Int. J. Robot. Res. 27(11–12), 1361–1374 (2008)

    Article  Google Scholar 

  4. Arkin, E.M., Mitchell, J.S.B., Polishchuk, V.: Maximum thick paths in static and dynamic environments. Comput. Geom. 43(3), 279–294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asano, T., Kirkpatrick, D., Yap, C.K.: d 1-optimal motion for a rod. In: Proceedings of the 12th Annual ACM Symposium on Computational Geometry, pp. 252–263 (1996)

    Google Scholar 

  6. Asano, T., Kirkpatrick, D., Yap, C.K.: Minimizing the trace length of a rod endpoint in the presence of polygonal obstacles is NP-hard. In: Proceeding of Canadian Conference on Computational Geometry, pp. 10–13 (2003)

    Google Scholar 

  7. Barcia, J., Diaz-Banez, J., Gomez, F., Ventura, I.: The anchored Voronoi diagram: static and dynamic versions and applications. In: 19th European Workshop on Computational Geometry (2003)

    Google Scholar 

  8. Bereg, S., Kirkpatrick, D.: Curvature-bounded traversals of narrow corridors. In: Proceedings of the 21st Annual Symposium on Computational geometry, pp. 278–287 (2005)

    Google Scholar 

  9. Chew, L.P.: Planning the shortest path for a disc in O(n 2log n) time. In: Proceedings of the 1st Annual Symposium on Computational Geometry, pp. 214–220 (1985)

    Chapter  Google Scholar 

  10. Chowdhury, D.: Molecular motors: Design, mechanism, and control. Comput. Sci. Eng. 10, 70–77 (2008)

    Article  Google Scholar 

  11. A.F. Cook IV, Wenk, C., Daescu, O., Bitner, S., Cheung, Y.K., Kurdia, A.: Visiting a sequence of points with a bevel-tip needle. In: Proceedings of the 9th Latin American Theoretical Informatics Symposium (2010)

    Google Scholar 

  12. Efrat, A., Sharir, M.: A near-linear algorithm for the planar segment center problem. Discrete Comput. Geom. 16, 239–257 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, T., Kahng, A., Robins, G.: Optimal robust path planning in general environments. IEEE Trans. Robot. Autom. 9, 775–784 (1993)

    Article  Google Scholar 

  14. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic, Boston (1991)

    Book  Google Scholar 

  15. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  16. Lee, J.Y., Choset, H.: Sensor-based planning for a rod-shaped robot in three dimensions: Piecewise retracts of R3×S2. Int. J. Robot. Res. 24(5), 343–383 (2005)

    Article  Google Scholar 

  17. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maley, F.M.: Single-Layer Wire Routing and Compaction. MIT Press, Cambridge (1990)

    Google Scholar 

  19. McEvoy, K., Tucker, J.V. (eds.): Theoretical Foundations of VLSI Design. Cambridge University Press, New York (1991)

    Google Scholar 

  20. Pach, J., Tardos, G.: Forbidden patterns and unit distances. In: Proceedings of the 21st Annual Symposium on Computational Geometry, pp. 1–9 (2005)

    Google Scholar 

  21. Sifrony, S., Sharir, M.: A new efficient motion-planning algorithm for a rod in two-dimensional polygonal space. Algorithmica 2, 367–402 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Veigel, C., Coluccio, L.M., Jontes, J.D., Sparrow, J.C., Milligan, R.A., Molloy, J.: The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Polishchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostitsyna, I., Polishchuk, V. Simple Wriggling is Hard Unless You Are a Fat Hippo. Theory Comput Syst 50, 93–110 (2012). https://doi.org/10.1007/s00224-011-9337-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9337-4

Keywords

Navigation