iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00224-010-9275-6
Area, Curve Complexity, and Crossing Resolution of Non-Planar Graph Drawings | Theory of Computing Systems Skip to main content
Log in

Area, Curve Complexity, and Crossing Resolution of Non-Planar Graph Drawings

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In this paper we study non-planar drawings of graphs, and study trade-offs between the crossing resolution (i.e., the minimum angle formed by two crossing segments), the curve complexity (i.e., maximum number of bends per edge), the total number of bends, and the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. In: Eppstein, D., Gansner, E.R. (eds.) Graph Drawing, 17th International Symposium, GD 2009. LNCS, vol. 5849, pp. 21–32. Springer, Berlin (2010)

    Google Scholar 

  2. Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.: Drawing graphs with orthogonal crossings. In: Graph-Theoretic Concepts in Computer Science, 36th International Workshop, WG 2010, LNCS. Springer (2010, to appear)

  3. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing resolution of non-planar graph drawings. In: Eppstein, D., Gansner, E.R. (eds.) Graph Drawing, 17th International Symposium, GD 2009. LNCS, vol. 5849, pp. 15–20. Springer, Berlin (2010)

    Google Scholar 

  4. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. In: Dehne, F.K.H.A., Gavrilova, M.L., Sack, J.-R., Tóth, C.D. (eds.) Algorithms and Data Structures, 11th International Symposium, WADS 2009. LNCS, vol. 5664, pp. 206–217. Springer, Berlin (2009)

    Google Scholar 

  5. Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite rac graphs. Inf. Process. Lett. 110(16), 687–691 (2010)

    Article  MathSciNet  Google Scholar 

  6. Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. In: Proc. of 16th CATS Symposium, CRPIT. ACS (2010, to appear)

  7. Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    MATH  Google Scholar 

  8. Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S.-H., Ma, K.-L. (eds.) APVIS 2007, 6th International Asia-Pacific Symposium on Visualization 2007, pp. 97–100. IEEE, New York (2007)

    Chapter  Google Scholar 

  9. Huang, W.: An eye tracking study into the effects of graph layout. CoRR, abs/0810.4431 (2008)

  10. Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, pp. 41–46. IEEE, New York (2008)

    Chapter  Google Scholar 

  11. Jünger, M., Mutzel, P. (eds.): Graph Drawing Software. Springer, Berlin (2004)

    Google Scholar 

  12. Papakostas, A., Tollis, I.G.: Efficient orthogonal drawings of high degree graphs. Algorithmica 26(1), 100–125 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000)

    Article  Google Scholar 

  14. Purchase, H.C., Carrington, D.A., Allder, J.-A.: Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tóth, G., Valtr, P.: Note on the Erdos–Szekeres theorem. Discrete Comput. Geom. 19(3), 457–459 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)

    Article  Google Scholar 

  17. Wood, D.R.: Grid drawings of k-colourable graphs. Comput. Geom. 30(1), 25–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Di Giacomo.

Additional information

A preliminary version of this paper has appeared in [3]. This work was supported in part by MIUR of Italy under project AlgoDEEP prot. 2008TFBWL4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giacomo, E., Didimo, W., Liotta, G. et al. Area, Curve Complexity, and Crossing Resolution of Non-Planar Graph Drawings. Theory Comput Syst 49, 565–575 (2011). https://doi.org/10.1007/s00224-010-9275-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-010-9275-6

Keywords

Navigation