iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00220-016-2704-x
Comparison of Unitary Duals of Drinfeld Doubles and Complex Semisimple Lie Groups | Communications in Mathematical Physics Skip to main content
Log in

Comparison of Unitary Duals of Drinfeld Doubles and Complex Semisimple Lie Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We determine a substantial part of the unitary representation theory of the Drinfeld double of a q-deformation of a compact Lie group in terms of the complexification of the compact Lie group. Using this, we show that the dual of every q-deformation of a higher rank compact Lie group has central property (T). We also determine the unitary dual of \({SL_q(n,\mathbb{C})}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen H.H., Mazorchuk V.: Category \({\mathcal{O}}\) for quantum groups. J. Eur. Math. Soc. (JEMS) 17(2), 405–431 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arano, Y.: Unitary spherical representations of Drinfeld doubles. J. Reine Angew. Math. (to appear)

  3. Baumann P.: Another proof of Joseph and Letzter’s separation of variables theorem for quantum groups. Transform. Groups 5(1), 3–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brannan M.: Approximation properties for free orthogonal and free unitary quantum groups. J. Reine Angew. Math. 672, 223–251 (2012)

    MathSciNet  MATH  Google Scholar 

  5. De Commer K., Freslon A., Yamashita M.: CCAP for universal discrete quantum groups. Comm. Math. Phys. 331(2), 677–701 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Duflo, M.: Reprsentations irrductibles des groupes semi-simples complexes. (French) Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–75), pp. 26–88. Lecture Notes in Math., Vol. 497, Springer, Berlin (1975)

  7. Etingof P., Kazhdan D.: Quantization of Lie bialgebras. VI. Quantization of generalized Kac-Moody algebras. Transform. Groups 13(3-4), 527–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freslon A.: Examples of weakly amenable discrete quantum groups. J. Funct. Anal. 265(9), 2164–2187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghosh S.K., Jones C.: Annular representation theory for rigid C *-tensor categories. J. Funct. Anal. 270(4), 1537–1584 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jones C.: Quantum G 2 categories have property (T). Internat. J. Math. 27(2), 23 (2016) (1650015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Joseph, A.: Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 29, pp. x+383. Springer, Berlin (1995). ISBN: 3-540-57057-8

  12. Joseph A., Letzter G.: Verma module annihilators for quantized enveloping algebras. Ann. Sci. École Norm. Sup. (4) 28(4), 493–526 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Neshveyev, S., Tuset, L.: Compact quantum groups and their representation categories. Cours Spécialisés [Specialized Courses], 20, pp. vi+169. Société Mathématique de France, Paris, (2013). ISBN: 978-2-85629-777-3

  14. Neshveyev, S., Yamashita, M.: Drinfeld center and representation theory for monoidal categories. Commun. Math. Phys. (to appear)

  15. Popa S.: Some properties of the symmetric enveloping algebra of a subfactor, with applications to amenability and property T. Doc. Math. 4, 665–744 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Popa S., Vaes S.: Representation theory for subfactors, λ-lattices and C *-tensor categories. Commun. Math. Phys. 340(3), 1239–1280 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Pusz W.: Irreducible unitary representations of quantum Lorentz group. Commun. Math. Phys. 152(3), 591–626 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Voigt C.: The Baum–Connes conjecture for free orthogonal quantum groups. Adv. Math. 227(5), 1873–1913 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Voigt C., Yuncken R.: On the principal series representations of quantized complex semisimple groups (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Arano.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arano, Y. Comparison of Unitary Duals of Drinfeld Doubles and Complex Semisimple Lie Groups. Commun. Math. Phys. 351, 1137–1147 (2017). https://doi.org/10.1007/s00220-016-2704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2704-x

Navigation