Abstract
We determine a substantial part of the unitary representation theory of the Drinfeld double of a q-deformation of a compact Lie group in terms of the complexification of the compact Lie group. Using this, we show that the dual of every q-deformation of a higher rank compact Lie group has central property (T). We also determine the unitary dual of \({SL_q(n,\mathbb{C})}\).
Similar content being viewed by others
References
Andersen H.H., Mazorchuk V.: Category \({\mathcal{O}}\) for quantum groups. J. Eur. Math. Soc. (JEMS) 17(2), 405–431 (2015)
Arano, Y.: Unitary spherical representations of Drinfeld doubles. J. Reine Angew. Math. (to appear)
Baumann P.: Another proof of Joseph and Letzter’s separation of variables theorem for quantum groups. Transform. Groups 5(1), 3–20 (2000)
Brannan M.: Approximation properties for free orthogonal and free unitary quantum groups. J. Reine Angew. Math. 672, 223–251 (2012)
De Commer K., Freslon A., Yamashita M.: CCAP for universal discrete quantum groups. Comm. Math. Phys. 331(2), 677–701 (2014)
Duflo, M.: Reprsentations irrductibles des groupes semi-simples complexes. (French) Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–75), pp. 26–88. Lecture Notes in Math., Vol. 497, Springer, Berlin (1975)
Etingof P., Kazhdan D.: Quantization of Lie bialgebras. VI. Quantization of generalized Kac-Moody algebras. Transform. Groups 13(3-4), 527–539 (2008)
Freslon A.: Examples of weakly amenable discrete quantum groups. J. Funct. Anal. 265(9), 2164–2187 (2013)
Ghosh S.K., Jones C.: Annular representation theory for rigid C *-tensor categories. J. Funct. Anal. 270(4), 1537–1584 (2016)
Jones C.: Quantum G 2 categories have property (T). Internat. J. Math. 27(2), 23 (2016) (1650015)
Joseph, A.: Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 29, pp. x+383. Springer, Berlin (1995). ISBN: 3-540-57057-8
Joseph A., Letzter G.: Verma module annihilators for quantized enveloping algebras. Ann. Sci. École Norm. Sup. (4) 28(4), 493–526 (1995)
Neshveyev, S., Tuset, L.: Compact quantum groups and their representation categories. Cours Spécialisés [Specialized Courses], 20, pp. vi+169. Société Mathématique de France, Paris, (2013). ISBN: 978-2-85629-777-3
Neshveyev, S., Yamashita, M.: Drinfeld center and representation theory for monoidal categories. Commun. Math. Phys. (to appear)
Popa S.: Some properties of the symmetric enveloping algebra of a subfactor, with applications to amenability and property T. Doc. Math. 4, 665–744 (1999)
Popa S., Vaes S.: Representation theory for subfactors, λ-lattices and C *-tensor categories. Commun. Math. Phys. 340(3), 1239–1280 (2015)
Pusz W.: Irreducible unitary representations of quantum Lorentz group. Commun. Math. Phys. 152(3), 591–626 (1993)
Voigt C.: The Baum–Connes conjecture for free orthogonal quantum groups. Adv. Math. 227(5), 1873–1913 (2011)
Voigt C., Yuncken R.: On the principal series representations of quantized complex semisimple groups (in preparation)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Rights and permissions
About this article
Cite this article
Arano, Y. Comparison of Unitary Duals of Drinfeld Doubles and Complex Semisimple Lie Groups. Commun. Math. Phys. 351, 1137–1147 (2017). https://doi.org/10.1007/s00220-016-2704-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-016-2704-x