iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00211-020-01112-4
Optimal error estimates for the scalar auxiliary variable finite-element schemes for gradient flows | Numerische Mathematik Skip to main content
Log in

Optimal error estimates for the scalar auxiliary variable finite-element schemes for gradient flows

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We carry out in this paper a rigorous error analysis for a finite element discretization of the scalar auxiliary variable (SAV) schemes. The finite-element method we study is a Galerkin method with standard Lagrange elements based on a mixed variational formulation. We derive optimal error estimates for both the first- and second-order SAV schemes with the finite-element method in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013)

    Article  MathSciNet  Google Scholar 

  3. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edn. Springer, New York (2010)

    Google Scholar 

  4. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I: interfacial free energy. J. Chem. Phys. 28, 258 (1958)

    Article  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  6. Condette, N., Melcher, C., Süli, E.: Spectral approximation of patternforming nonlinear evolution equations with double-well potentials of quadratic growth. Math. Comput. 80(273), 205–223 (2011)

    Article  Google Scholar 

  7. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  Google Scholar 

  8. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    Article  MathSciNet  Google Scholar 

  9. Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76, 539–571 (2007)

    Article  MathSciNet  Google Scholar 

  10. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numerische Mathematik 99(1), 47–84 (2004)

    Article  MathSciNet  Google Scholar 

  11. Kay, D., Styles, V., Süli, E.: Discontinuous galerkin finite element approximation of the Cahn–Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kessler, D., Nochetto, R.H., Schmidt, A.: A posteriori error control for the Allen–Cahn problem: circumventing Gronwall’s inequality. ESAIM: Math. Modell. Numer. Anal. 38(1), 129–142 (2004)

    Article  MathSciNet  Google Scholar 

  13. Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135(3), 679–709 (2017)

    Article  MathSciNet  Google Scholar 

  14. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018)

    Article  MathSciNet  Google Scholar 

  16. Shen, J., Jie, X., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  17. Shen, J., Jie, X., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  18. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, Berlin (1997)

    Book  Google Scholar 

  19. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  21. Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017)

    Article  MathSciNet  Google Scholar 

  22. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the first and second authors was supported in part by the National Natural Science Foundation of China (No. 11871410), the Natural Science Foundation of Fujian Province of China (No. 2018J01004), the Fundamental Research Funds for the Central Universities (No. 20720180001). The first author also gratefully acknowledges financial support from China Scholarship Council. The work of the third author was supported in part by National Natural Science Foundation of China (No. 11971407).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Mao, J. & Shen, J. Optimal error estimates for the scalar auxiliary variable finite-element schemes for gradient flows. Numer. Math. 145, 167–196 (2020). https://doi.org/10.1007/s00211-020-01112-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01112-4

Mathematics Subject Classification

Navigation