iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00211-019-01066-2
Fast, reliable and unrestricted iterative computation of Gauss–Hermite and Gauss–Laguerre quadratures | Numerische Mathematik Skip to main content
Log in

Fast, reliable and unrestricted iterative computation of Gauss–Hermite and Gauss–Laguerre quadratures

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Methods for the computation of classical Gaussian quadrature rules are described which are effective both for small and large degree. These methods are reliable because the iterative computation of the nodes has guaranteed convergence, and they are fast due to their fourth-order convergence and its asymptotic exactness for an appropriate selection of the variables. For Gauss–Hermite and Gauss–Laguerre quadratures, local Taylor series can be used for computing efficiently the orthogonal polynomials involved, with exact initial values for the Hermite case and first values computed with a continued fraction for the Laguerre case. The resulting algorithms have almost unrestricted validity with respect to the parameters. Full relative precision is reached for the Hermite nodes, without any accuracy loss and for any degree, and a mild accuracy loss occurs for the Hermite and Laguerre weights as well as for the Laguerre nodes. These fast methods are exclusively based on convergent processes, which, together with the high order of convergence of the underlying iterative method, makes them particularly useful for high accuracy computations. We show examples of very high accuracy computations (of up to 1000 digits of accuracy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Notice that we have changed the notation for the nodes with respect to the previous section and the index runs differently since we are considering the positive nodes.

  2. Of course, we could use other moments, as for instance \(\displaystyle \int _{-\infty }^{\infty } e^{-x^2}dx=\sqrt{\pi }= \delta _{1,k}w_0 f(0)+2\displaystyle \sum _{j=1}^{\lfloor n/2 \rfloor } w_j f(\alpha _j)\), \(k=n-2\lfloor n/2\rfloor \).

  3. This is a consequence of the absolute error relation (see [24, Eq. (2.13)]) \(x^{(k+1)}-\alpha \approx \frac{\displaystyle {1}}{\displaystyle {12}}A'(\alpha )(x^{(k)}-\alpha )^4\), with \(\alpha \) the root that is computed, together with the fact that for the Hermite equation \(A(x)=2n+1-x^2\), which implies that \(1-\frac{\displaystyle {x^{(k+1)}}}{\displaystyle {\alpha }} \approx \frac{\displaystyle {1}}{\displaystyle {6}}(x^{(k)}-\alpha )^4\approx \frac{\displaystyle {1}}{\displaystyle {6}}(x^{(k)}-x^{(k+1)})^4\)

  4. A fair comparison of efficiency between different methods should be always made by using implementations in a same platform and programming language (as is the case of the codes in this paper and [14]). This means that the different codes (if available) should be translated to a same language and carefully optimized. It would be certainly interesting to coherently benchmark the different available approaches, but this is outside the scope of the present paper.

  5. See http://personales.unican.es/segurajj/gaussian.html.

  6. Note that all the z-values generated by \(T_{-1}\) are an increasing sequence and therefore the stopping rule is safe.

  7. We have \(z_e-z_{l}=(\alpha ^2-1/4)^{1/4}(1+\mathcal{O}(n^{-1/2}))\) and the maximum value of A(z) is reached at \(z=z_e\), where \(A(z_e)=2(L-\sqrt{\alpha ^2-1/4})\). Therefore, the distance between consecutive nodes in the z variable can be bounded by \(\varDelta z=z_{i+1}-z_{i}>\pi /\sqrt{A(z_e)}\); with this we estimated that the number of zeros smaller than \(z_e\) is \((z_e-z_l)\sqrt{A(z_e)}/\pi \sim \frac{\displaystyle {2(\alpha ^2-1/4)^{1/4}}}{\displaystyle {\pi }}\sqrt{n}\), which is an upper bound.

  8. Or, if \(h(z_e)\) is very large, we can instead take \({\bar{y}}(z_e)=1\) and \(\dot{{\bar{y}}}(z_e)=1/h(z_e)\) to prevent overflows.

References

  1. Bogaert, I.: Iteration-free computation of Gauss–Legendre quadrature nodes and weights. SIAM J. Sci. Comput. 36(3), A1008–A1026 (2014). https://doi.org/10.1137/140954969

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogaert, I., Michiels, B., Fostier, J.: O(1) computation of Legendre polynomials and Gauss–Legendre nodes and weights for parallel computing. SIAM J. Sci. Comput. 34(3), C83–C101 (2012). https://doi.org/10.1137/110855442

    Article  MathSciNet  MATH  Google Scholar 

  3. Bremer, J.: On the numerical calculation of the roots of special functions satisfying second order ordinary differential equations. SIAM J. Sci. Comput. 39(1), A55–A82 (2017). https://doi.org/10.1137/16M1057139

    Article  MathSciNet  MATH  Google Scholar 

  4. Cash, J.: A note on the numerical solution of linear recurrence relations. Numer. Math. 34, 371–386 (1980). https://doi.org/10.1007/BF01403675

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis, P., Rabinowitz, P.: Abscissas and weights for Gaussian quadratures of high order. J. Res. Nat. Bur. Stand. 56, 35–37 (1956)

    Article  MathSciNet  Google Scholar 

  6. Deaño, A., Huybrechs, D., Opsomer, P.: Construction and implementation of asymptotic expansions for Jacobi-type orthogonal polynomials. Adv. Comput. Math. 42(4), 791–822 (2016). https://doi.org/10.1007/s10444-015-9442-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Deaño, A., Gil, A., Segura, J.: New inequalities from classical Sturm theorems. J. Approx. Theory 131(2), 208–230 (2004). https://doi.org/10.1016/j.jat.2004.09.006

    Article  MathSciNet  MATH  Google Scholar 

  8. Deaño, A., Segura, J.: Global Sturm inequalities for the real zeros of the solutions of the Gauss hypergeometric differential equation. J. Approx. Theory 148(1), 92–110 (2007). https://doi.org/10.1016/j.jat.2007.02.005

    Article  MathSciNet  MATH  Google Scholar 

  9. Dimitrov, D.K., Nikolov, G.P.: Sharp bounds for the extreme zeros of classical orthogonal polynomials. J. Approx. Theory 162(10), 1793–1804 (2010). https://doi.org/10.1016/j.jat.2009.11.006

    Article  MathSciNet  MATH  Google Scholar 

  10. Gautschi, W.: Gauss–Radau formulae for Jacobi and Laguerre weight functions. Math. Comput. Simul. 54(4–5), 403–412 (2000). https://doi.org/10.1016/S0378-4754(00)00179-8. 1999 International Symposium on Computational Sciences, to honor John R. Rice (West Lafayette, IN)

    Article  MathSciNet  Google Scholar 

  11. Gautschi, W.: Generalized Gauss–Radau and Gauss–Lobatto formulae. BIT 44(4), 711–720 (2004). https://doi.org/10.1007/s10543-004-3812-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007). https://doi.org/10.1137/1.9780898717822

  13. Gil, A., Segura, J., Temme, N.M.: Recent software developments for special functions in the Santander–Amsterdam project. Sci. Comput. Program. 90A, 42–54 (2014)

    Article  Google Scholar 

  14. Gil, A., Segura, J., Temme, N.M.: Asymptotic approximations to the nodes and weights of Gauss–Hermite and Gauss–Laguerre quadratures. Stud. Appl. Math. 140(3), 298–332 (2018). https://doi.org/10.1111/sapm.12201

    Article  MathSciNet  Google Scholar 

  15. Gil, A., Segura, J., Temme, N.M.: Noniterative computation of Gauss–Jacobi quadrature. SIAM J. Sci. Comput. 41(1), A668–A693 (2019). https://doi.org/10.1137/18M1179006

    Article  MathSciNet  MATH  Google Scholar 

  16. Glaser, A., Liu, X., Rokhlin, V.: A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 29(4), 1420–1438 (2007). https://doi.org/10.1137/06067016X

    Article  MathSciNet  MATH  Google Scholar 

  17. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23(1969), 221–230. addendum, ibid. 23(106, loose microfiche suppl), A1–A10 (1969)

    Article  MathSciNet  Google Scholar 

  18. Hale, N., Townsend, A.: Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights. SIAM J. Sci. Comput. 35(2), A652–A674 (2013). https://doi.org/10.1137/120889873

    Article  MathSciNet  MATH  Google Scholar 

  19. Huybrechs, D., Opsomer, P.: Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials. IMA J. Numer. Anal. 38(3), 1085–1118 (2018). https://doi.org/10.1093/imanum/drx030

    Article  MathSciNet  MATH  Google Scholar 

  20. Johansson, F., Mezzarobba, M.: Fast and rigorous arbitrary-precision computation of Gauss–Legendre quadrature nodes and weights. arXiv preprint arXiv:1802.03948 (2018)

  21. Kreuser, P.: Über das Verhalten der Integrale homogener linearer Differenzengleichungen im Unendlichen. Dissertation. Tübingen, 48 S (1914)

  22. Lowan, A.N., Davids, N., Levenson, A.: Table of the zeros of the Legendre polynomials of order 1–16 and the weight coefficients for Gauss’ mechanical quadrature formula. Bull. Am. Math. Soc. 48, 739–743 (1942)

    Article  MathSciNet  Google Scholar 

  23. Olver, F.W.J.: Asymptotics and Special Functions. AKP Classics. A K Peters, Ltd., Wellesley (1997). (Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)])

    Book  Google Scholar 

  24. Segura, J.: Reliable computation of the zeros of solutions of second order linear ODEs using a fourth order method. SIAM J. Numer. Anal. 48(2), 452–469 (2010). https://doi.org/10.1137/090747762

    Article  MathSciNet  MATH  Google Scholar 

  25. Segura, J., Temme, N.M.: Numerically satisfactory solutions of Kummer recurrence relations. Numer. Math. 111(1), 109–119 (2008). https://doi.org/10.1007/s00211-008-0175-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Swarztrauber, P.N.: On computing the points and weights for Gauss–Legendre quadrature. SIAM J. Sci. Comput. 24(3), 945–954 (2002). https://doi.org/10.1137/S1064827500379690. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  27. Townsend, A., Trogdon, T., Olver, S.: Fast computation of Gauss quadrature nodes and weights on the whole real line. IMA J. Numer. Anal. 36(1), 337–358 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Wilf, H.S.: Mathematics for the Physical Sciences. Dover Publications, Inc., New York (1978). (Reprinting of the 1962 original, Dover Books in Advanced Mathematics)

    MATH  Google Scholar 

  29. Yakimiw, E.: Accurate computation of weights in classical Gauss–Christoffel quadrature rules. J. Comput. Phys. 129(2), 406–430 (1996). https://doi.org/10.1006/jcph.1996.0258

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their constructive comments and suggestions. NMT thanks CWI for scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Segura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Ministerio de Ciencia, Innovación y Universidades, projects MTM2015-67142-P (MINECO/FEDER, UE) and PGC2018-098279-B-I00 (MCIU/AEI/FEDER,UE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, A., Segura, J. & Temme, N.M. Fast, reliable and unrestricted iterative computation of Gauss–Hermite and Gauss–Laguerre quadratures. Numer. Math. 143, 649–682 (2019). https://doi.org/10.1007/s00211-019-01066-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01066-2

Mathematics Subject Classification

Navigation