iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00211-019-01028-8
Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise | Numerische Mathematik Skip to main content
Log in

Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Numerical approximation of a stochastic partial integro-differential equation driven by a space-time white noise is studied by truncating a series representation of the noise, with finite element method for spatial discretization and convolution quadrature for time discretization. Sharp-order convergence of the numerical solutions is proved up to a logarithmic factor. Numerical examples are provided to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, E.J., Novosel, S.J., Zhang, Z.: Finite element and difference approximation of some linear stochastic partial differential equations. Stochastics and Stochastics Reports, 64 (1998)

  2. Anton, R., Cohen, D., Larsson, S., Wang, X.: Full discretization of semilinear stochastic wave equations driven by multiplicative noise. SIAM J. Numer. Anal. 54(2), 1093–1119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt, W., Batty, C.J., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems, 2nd edn. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  4. Baňas, L., Brzeźnik, Z., Prohl, A.: Computational studies for the stochastic Landau–Lifshitz–Gilbert equation. SIAM J. Sci. Comput. 35(1), B62–B81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  6. Clément, P., Da Prato, G.: Some results on stochastic convolutions arising in Volterra equations perturbed by noise. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7(3), 147–153 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  9. Du, Q., Zhang, T.: Numerical approximation of some linear stochastic partial differential equations driven by special additive noises. SIAM J. Numer. Anal. 40(4), 1421–1445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, X., Li, Y., Prohl, A.: Finite element approximations of the stochastic mean curvature flow of planar curves of graphs. Stoch. PDE Anal. Comput. 2(1), 54–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics. Springer, New York (2008)

    MATH  Google Scholar 

  12. Gunzburger, M., Li, B., Wang, J.: Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comput. (2019). https://doi.org/10.1090/mcom/3397

    Article  MathSciNet  MATH  Google Scholar 

  13. Gunzburger, M., Wang, J.: A second-order Crank-Nicolson method for time-fractional PDEs. Int. J. Numer. Anal. Model. 16(2), 225–239 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, B., Li, B., Zhou, Z.: An analysis of the Crank–Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  18. Kovács, M., Printems, J.: Strong order of convergence of a fully discrete approximation of linear stochastic Volterra type evolution equation. Math. Comput. 83(289), 2325–2346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laptev, A.: Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151, 531–545 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, P., Yau, S.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88(3), 309–318 (1983)

    Article  MATH  Google Scholar 

  21. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52(4), 413–425 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mijena, J.B., Nane, E.: Space-time fractional stochastic partial differential equations. Stoch. Process. Appl. 125, 3301–3326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25(2), 319–327 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shardlow, T.: Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20, 121–145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strauss, W.A.: Partial Differential Equations: An Introduction. Wiley, New York (2008)

    MATH  Google Scholar 

  28. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Vázquez, L., Velasco, M., Vázquez-Poletti, J., Llorente, M., Usero, D., Jiménez, S.: Modeling and simulation of the atmospheric dust dynamic: fractional calculus and cloud computing. Int. J. Numer. Anal. Model. 15(1), 74–85 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363–1384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of M. Gunzburger and J. Wang was supported in part by the USA National Science Foundation Grant DMS-1315259 and by the USA Air Force Office of Scientific Research Grant FA9550-15-1-0001. The research of B. Li was supported in part by the Hong Kong RGC Grant 15300817.

Appendices

Mild solution of (1.1)

In the case \(\alpha \in (1,2)\), the boundary condition \(\partial _t^{1-\alpha }\psi =0\) is equivalent to \(\psi =0\) on \(\partial \Omega \) (this can be checked by taking Laplace transform in time). Similarly, in the case \(\alpha \in (0,1]\), the boundary condition \(\partial _t^{1-\alpha }\psi =0\) is equivalent to \(\psi -\psi _0=0\) on \(\partial \Omega \times [0,\infty )\), where \(\psi _0=\psi (\cdot ,0)\) is the initial value in (1.1).

In the case \(\sigma =0\), the solution of the corresponding deterministic problem of (1.1) can be expressed by (via Laplace transform, cf. [23, (3.11) and line 4 of page 12] in the case \(\alpha \in (1,2)\))

$$\begin{aligned} \psi (\cdot ,t) = \left\{ \begin{array}{ll} \psi _0 + \int _0^t E(t-s) f(\cdot ,s)\mathrm{d}s &{}\quad \text {if}\,\,\,\alpha \in (0,1] , \\ E(t) \psi _0 + \int _0^t E(t-s) f(\cdot ,s)\mathrm{d}s &{}\quad \text {if}\,\,\,\alpha \in (1,2) , \end{array} \right. \end{aligned}$$
(A.1)

where the operator \(E(t):L^2(\mathcal {O})\rightarrow L^2(\mathcal {O})\) is given by

$$\begin{aligned} E(t) \phi :=\frac{1}{2\pi \mathrm{i}}\int _{\varGamma _{\theta ,\kappa }}e^{zt} z^{\alpha -1} (z^\alpha -\Delta )^{-1}\phi \, \mathrm{d}z \quad \forall \, \phi \in L^2(\mathcal {O}) \end{aligned}$$
(A.2)

with integration over a contour \(\varGamma _{\theta ,\kappa }\) on the complex plane.

Correspondingly, the mild solution of the stochastic problem (1.1) is defined as (cf. [18, Proposition 2.7] and [24])

$$\begin{aligned} \psi (\cdot ,t) = \left\{ \begin{array}{ll} \psi _0 + \int _0^t E(t-s) f(\cdot ,s)\mathrm{d}s +\sigma \int _0^t E(t-s)\mathrm{d}W(\cdot ,s) &{}\quad \text {if}\quad \alpha \in (0,1] , \\ E(t) \psi _0 + \int _0^t E(t-s) f(\cdot ,s)\mathrm{d}s +\sigma \int _0^t E(t-s)\mathrm{d}W(\cdot ,s) &{}\quad \text {if}\quad \alpha \in (1,2) . \end{array} \right. \end{aligned}$$
(A.3)

For any given initial data \(\psi _0\in L^2(\mathcal {O})\) and source \(f\in L^1(0,T;L^2(\mathcal {O}))\), the expression (A.3) defines a mild solution \(\psi \in C([0,T];L^2(\Omega ; L^2(\mathcal {O})))\). In the case \(\psi _0=f=0\) and \(\sigma \ne 0\), a simple proof of this result can be found in [12, Appendix]; in the case \(\sigma =0\) (\(\psi _0\) and f may not be zero), the result is a consequence of the boundedness of the operator \(E(t):L^2(\mathcal {O})\rightarrow L^2(\mathcal {O})\), i.e.,

$$\begin{aligned} \Vert E(t)v\Vert&\le C\int _{\varGamma _{\theta ,\kappa }} |e^{zt}| |z|^{\alpha -1} \Vert (z^\alpha -\Delta )^{-1}v\Vert |\mathrm{d}z| \nonumber \\&\le C\Vert v\Vert \int _\kappa ^{\infty } e^{-rt|\cos (\theta )|} r^{-1} \mathrm{d}r +C\Vert v\Vert \int _{-\theta }^\theta e^{\kappa t\cos (\varphi )} \mathrm{d}\varphi \nonumber \\&\le C\Vert v\Vert \qquad \forall \, v\in L^2(\mathcal {O}). \end{aligned}$$
(A.4)

Similarly, the discrete operator \(E^{(h)}(t):X_h\rightarrow X_h\) defined by

$$\begin{aligned} E^{(h)}(t) \phi :=\frac{1}{2\pi \mathrm{i}}\int _{\varGamma _{\theta ,\kappa }}e^{zt} z^{\alpha -1} (z^\alpha -\Delta _h )^{-1}\phi \, \mathrm{d}z \quad \forall \, \phi \in X_h , \end{aligned}$$
(A.5)

is also bounded on the finite element subspace \(X_h\), i.e.,

$$\begin{aligned} \Vert E^{(h)}(t)v\Vert \le C\Vert v\Vert \quad \forall \, v\in X_h , \end{aligned}$$
(A.6)

where the constant C is independent of the mesh size h.

Representation of the discrete solutions

For \(f=0\) we prove the following representation of the solutions of (4.2) and (2.23):

$$\begin{aligned} v^{(h)}(\cdot ,t_n)&= P_h\psi _0 + \frac{1}{2\pi \mathrm {i}}\int _{\varGamma _{\theta ,\kappa }} e^{zt_n}z^{-1} (z^\alpha - \Delta _h)^{-1} \Delta _hP_h\psi _0 \mathrm{d}z , \end{aligned}$$
(B.1)
$$\begin{aligned} v_n^{(h)}&=P_h\psi _0 + \frac{1}{2\pi i}\int _{\varGamma _{\theta ,\kappa }^{(\tau )}} e^{t_nz}e^{-z\tau } \delta (e^{-z\tau })^{-1} \big (\delta (e^{-z\tau })^{\alpha }-\Delta _h\big )^{-1} \Delta _h P_h\psi _0 \, \mathrm{d}z , \end{aligned}$$
(B.2)

which are used in (4.18) in estimating the error of temporal discretization.

In fact, (B.1) is a consequence of (A.3): replacing E(t) by \(E^{(h)}(t)\) and substituting \(\phi =P_h\psi _0\) yield

$$\begin{aligned} \begin{aligned} v^{(h)}(\cdot ,t_n)&=\frac{1}{2\pi \mathrm{i}}\int _{\varGamma _{\theta ,\kappa }}e^{zt} z^{\alpha -1} (z^\alpha -\Delta _h )^{-1}P_h\psi _0\, \mathrm{d}z \\&=\frac{1}{2\pi \mathrm{i}}\int _{\varGamma _{\theta ,\kappa }}e^{zt} z^{-1}(z^\alpha -\Delta _h+\Delta _h) (z^\alpha -\Delta _h )^{-1}P_h\psi _0\, \mathrm{d}z \\&=\frac{1}{2\pi \mathrm{i}}\int _{\varGamma _{\theta ,\kappa }}e^{zt} z^{-1} P_h\psi _0\, \mathrm{d}z + \frac{1}{2\pi \mathrm{i}}\int _{\varGamma _{\theta ,\kappa }}e^{zt} z^{-1}(z^\alpha -\Delta _h )^{-1}\Delta _hP_h\psi _0\, \mathrm{d}z \\&=P_h\psi _0 + \frac{1}{2\pi \mathrm{i}}\int _{\varGamma _{\theta ,\kappa }}e^{zt} z^{-1}(z^\alpha -\Delta _h )^{-1}\Delta _hP_h\psi _0\, \mathrm{d}z , \end{aligned} \end{aligned}$$

where we have used the identity \(\frac{1}{2\pi \mathrm{i}}\int _{\varGamma _{\theta ,\kappa }}e^{zt} z^{-1} \mathrm{d}z =1\) (i.e., the inverse Laplace transform of \(z^{-1}\) is 1).

It remains to prove (B.2). To this end, we rewrite (2.23) as

$$\begin{aligned} \bar{\partial }_\tau (v_n^{(h)}-P_h\psi _0) -\Delta _h \bar{\partial }_\tau ^{1-\alpha } (v_n^{(h)}-P_h\psi _0) = \Delta _h \bar{\partial }_\tau ^{1-\alpha } (P_h\psi _0)_n , \end{aligned}$$
(B.3)

where \(\bar{\partial }_\tau ^{1-\alpha } (P_h\psi _0)_n:=\frac{1}{\tau ^{1-\alpha }}\sum _{j=1}^n b_{n-j} P_h\psi _0\). Since we are only interested in the solutions \(v_n^{(h)}\), \(n=1,\dots ,N\), we define

$$\begin{aligned} \widetilde{v}_n^{(h)} =\left\{ \begin{array}{ll} v_n^{(h)} &{}\quad 1\le n\le N,\\ P_h\psi _0 &{}\quad n\ge N+1 , \end{array}\right. \end{aligned}$$

which satisfies the equation

$$\begin{aligned} \bar{\partial }_\tau (\widetilde{v}_n^{(h)}-P_h\psi _0) -\Delta _h \bar{\partial }_\tau ^{1-\alpha } (\widetilde{v}_n^{(h)}-P_h\psi _0) = \Delta _h \bar{\partial }_\tau ^{1-\alpha } (P_h\psi _0)_n + g_n , \end{aligned}$$
(B.4)

with \(g_n=0\) for \(1\le n\le N\). The right-hand side of (B.4) differs from (B.3) only for \(n\ge N+1\), that

$$\begin{aligned} \Vert g_n\Vert\le & {} \Vert \Delta _h \bar{\partial }_\tau ^{1-\alpha } (\widetilde{v}_n^{(h)}-P_h\psi _0)\Vert +\Vert \Delta _h \bar{\partial }_\tau ^{1-\alpha } (P_h\psi _0)_n \Vert \nonumber \\\le & {} \frac{1}{\tau ^{1-\alpha }}\sum _{j=1}^N |b_{n-j}|\Vert \widetilde{v}_j^{(h)}-P_h\psi _0\Vert +\frac{1}{\tau ^{1-\alpha }}\sum _{j=1}^n |b_{n-j}|\Vert P_h\psi _0\Vert \nonumber \\\le & {} C\tau ^{\alpha -1}\left( \sum _{j=1}^N |b_{n-j}|+\sum _{j=1}^n |b_{n-j}|\right) \nonumber \\\le & {} C\tau ^{\alpha -1}n^{\alpha -1}, \end{aligned}$$

as \(n\rightarrow \infty \). Thus \(\sum _{n=N+1}^\infty g_n\zeta ^n\) is an analytic function of \(\zeta \) for \(|\zeta |<1\).

By (2.8), summing up (B.4) times \(\zeta ^n\) for \(n=1,2,\dots \), yields

$$\begin{aligned} \bigg (\frac{1-\zeta }{\tau }-\bigg (\frac{1-\zeta }{\tau }\bigg )^{1-\alpha }\Delta _h \bigg ) \sum _{n=1}^\infty (\widetilde{v}_n^{(h)}-P_h\psi _0)\zeta ^n= \Delta _h \bigg (\frac{1-\zeta }{\tau }\bigg )^{1-\alpha } \frac{\zeta }{1-\zeta } P_h\psi _0 + \sum _{n=N+1}^\infty g_n\zeta ^n , \end{aligned}$$

which implies

$$\begin{aligned} \sum _{n=1}^\infty (\widetilde{v}_n^{(h)}-P_h\psi _0)\zeta ^n= & {} \bigg (\frac{1-\zeta }{\tau }\bigg )^{-1} \bigg (\bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha }-\Delta _h \bigg ) ^{-1}\Delta _h P_h\psi _0 \frac{\zeta }{\tau } \\&+ \bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha -1}\bigg (\bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha }-\Delta _h \bigg )^{-1}\sum _{n=N+1}^\infty g_n\zeta ^n . \end{aligned}$$

For \(\kappa >0\) and \(\varrho _\kappa =e^{-(\kappa +1)\tau } \in (0,1)\), the Cauchy integral formula implies that

$$\begin{aligned}&\widetilde{v}_n^{(h)}-P_h\psi _0 \nonumber \\&\quad = \frac{1}{2\pi i}\int _{|\zeta |=\varrho _\kappa } \zeta ^{-n-1}\sum _{n=1}^\infty (v_n^{(h)}-P_h\psi _0)\zeta ^n \mathrm{d}\zeta \nonumber \\&\quad = \frac{1}{2\pi i}\int _{|\zeta |=\varrho _\kappa } \zeta ^{-n} \bigg (\frac{1-\zeta }{\tau }\bigg )^{-1} \bigg (\bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha }-\Delta _h\bigg )^{-1}\frac{1}{\tau }\Delta _h P_h\psi _0 \mathrm{d}\zeta \nonumber \\&\quad \quad + \frac{1}{2\pi i}\int _{|\zeta |=\varrho _\kappa } \bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha -1}\bigg (\bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha }-\Delta _h \bigg )^{-1}\sum _{m=N+1}^\infty g_m\zeta ^{m-n-1} \mathrm{d}\zeta . \end{aligned}$$
(B.5)

For \(1\le n\le N\) the function \( \big (\frac{1-\zeta }{\tau }\big )^{\alpha -1}\big (\big (\frac{1-\zeta }{\tau }\big )^{\alpha }-\Delta _h \big )^{-1}\sum _{m=N+1}^\infty g_m\zeta ^{m-n-1} \) is analytic in \(|\zeta |<1\). Consequently, Cauchy’s integral theorem implies

$$\begin{aligned} \frac{1}{2\pi i}\int _{|\zeta |=\varrho _\kappa } \bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha -1}\bigg (\bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha }-\Delta _h \bigg )^{-1}\sum _{m=N+1}^\infty g_m\zeta ^{m-n-1} \mathrm{d}\zeta =0 . \end{aligned}$$

Substituting this identity into (B.5) yields, for \(1\le n\le N\),

$$\begin{aligned}&\widetilde{v}_n^{(h)}-P_h\psi _0\nonumber \\&\quad =v_n^{(h)}-P_h\psi _0 \nonumber \\&\quad = \frac{1}{2\pi i}\int _{|\zeta |=\varrho _\kappa } \zeta ^{-n} \bigg (\frac{1-\zeta }{\tau }\bigg )^{-1} \bigg (\bigg (\frac{1-\zeta }{\tau }\bigg )^{\alpha }-\Delta _h\bigg )^{-1}\frac{1}{\tau }\Delta _h P_h\psi _0 \mathrm{d}\zeta \nonumber \\&\quad = \frac{1}{2\pi i}\int _{\varGamma ^\tau }e^{t_nz}e^{-z\tau } \bigg (\frac{1-e^{-\tau z}}{\tau }\bigg )^{-1} \bigg (\bigg (\frac{1-e^{-\tau z}}{\tau }\bigg )^{\alpha }-\Delta _h\bigg )^{-1} \Delta _h P_h\psi _0 \, \mathrm{d}z \nonumber \\&= \frac{1}{2\pi i}\int _{\varGamma ^\tau }e^{t_nz}e^{-z\tau } \delta (e^{-z\tau })^{-1} \big (\delta (e^{-z\tau })^{\alpha }-\Delta _h\big )^{-1} \Delta _h P_h\psi _0 \, \mathrm{d}z, \end{aligned}$$
(B.6)

where we have used the change of variable \(\zeta =e^{-z\tau }\), which converts the path of integration to the contour

$$\begin{aligned} \varGamma ^\tau =\left\{ z=\kappa +1+\mathrm {i} y: \, y\in {\mathbb R}\quad \text {and}\quad |y|\le {\pi }/{\tau } \right\} . \end{aligned}$$

The angle condition (3.4) and [3, Theorem 3.7.11] imply that the integrand on the right-hand side of (B.6) is analytic in the region

$$\begin{aligned} \Sigma _{\theta ,\kappa }^\tau = \Big \{z\in {\mathbb C} : |\mathrm{arg}(z)|\le \theta ,\quad |z|\ge \kappa ,\quad |\mathrm{Im}(z)|\le \frac{\pi }{\tau },\quad \mathrm{Re}(z)\le \kappa +1 \Big \} , \end{aligned}$$

enclosed by the four paths \(\varGamma ^\tau \), \(\varGamma _{\theta ,\kappa }^{(\tau )}\) and \({\mathbb R}\pm \mathrm {i}\pi /\tau \), where \(\varGamma _{\theta ,\kappa }^{(\tau )} \, =\left\{ z\in \varGamma _{\theta ,\kappa } : |\mathrm{Im}(z)|\right. \left. \le \frac{\pi }{\tau }\right\} \). Then Cauchy’s theorem allows us to deform the integration path from \(\varGamma ^\tau \) to \(\varGamma _{\theta ,\kappa }^{(\tau )}\) in the integral (B.6) (the integrals on \({\mathbb R}\pm \mathrm {i}\pi /\tau \) cancels each other). This yields the desired representation (B.2).

Some inequalities

In this appendix, we prove the following two inequalities:

$$\begin{aligned}&C_0^{\#}|z|\tau \le |1-e^{z\tau }|\le C_1^{\#}|z|\tau ,&\forall \, z\in \varGamma _{\theta ,\kappa }^{(\tau )}, \end{aligned}$$
(C.1)
$$\begin{aligned}&|1-e^{z\tau }|\le C|z|^{1/q}\tau ^{1/q},&\forall \, z\in \varGamma _{\theta ,\kappa },\quad 1\le q\le \infty , \end{aligned}$$
(C.2)

which have been used in (3.27), (4.26) and (4.32).

Proof of (C.1)

Note that

$$\begin{aligned} \varGamma _{\theta ,\kappa }^{(\tau )}&=\left\{ z\in \mathbb {C}: |z|=\kappa ,\, |\arg z|\le \theta \right\} \cup \left\{ z\in \mathbb {C}: z=\rho e^{\pm \mathrm{i}\theta }, \rho \ge \kappa , |\mathrm{Im}(z)|\le \frac{\pi }{\tau } \right\} \nonumber \\&=: \varGamma _{\theta ,\kappa }^{(\tau ),1}\cup \varGamma _{\theta ,\kappa }^{(\tau ),2}. \end{aligned}$$
(C.3)

For \(z\in \varGamma _{\theta ,\kappa }^{(\tau )}\) we have \(|z|\tau \le \pi /\sin (\theta )\). Since \(|z|\tau \) is bounded, the following Taylor expansion holds:

$$\begin{aligned}&1-e^{z\tau } =-z\tau +O(|z|^2\tau ^2) , \end{aligned}$$
(C.4)

which implies

$$\begin{aligned} |1-e^{z\tau }| \le C_1^{+}|z|\tau ,\quad \text {if}\,\,\,z\in \varGamma _{\theta ,\kappa }^{(\tau )}. \end{aligned}$$

This proves the right-half inequality of (C.1).

From (C.4) we also see that there exists a small constant \(\gamma \) such that

$$\begin{aligned} C_0^{+}|z|\tau \le |1-e^{z\tau }| ,\quad \text {if}\,\,\,z\in \varGamma _{\theta ,\kappa }^{(\tau )},\,\,\, |z|\tau <\gamma . \end{aligned}$$
(C.5)

If \(|z|\tau \ge \gamma \), then the following inequality holds for \(\theta \) satisfying the condition of Lemma 1:

$$\begin{aligned} \gamma \le |z|\tau \le \frac{\pi }{\sin (\theta )}\le \pi \sqrt{1+4/\pi ^2} \le \frac{3}{2}\pi . \end{aligned}$$

Since the function \(g(w):=|1-e^{w}|\) is not zero for \(\gamma \le |w| \le \frac{3}{2}\pi \), the function g(w) must have a positive minimum value \(\varpi \) for \(\gamma \le |w| \le \frac{3}{2}\pi \), i.e., \(g(w)\ge \varpi \). Consequently, we have

$$\begin{aligned} \begin{aligned}&\varpi \frac{\sin (\theta )}{\pi }|z|\tau \le \varpi \le |1-e^{z\tau }| ,&\text {if}\,\,\,z\in \varGamma _{\theta ,\kappa }^{(\tau )} ,\,\,\, |z|\tau \ge \gamma , \end{aligned} \end{aligned}$$
(C.6)

where we have used the inequality \(\frac{\sin (\theta )}{\pi }|z|\tau \le 1\) in the last inequality. Combining (C.5) and (C.6) yields (C.1).\(\square \)

Proof of (C.2)

If \(z\in \varGamma _{\theta ,\kappa }\) and \(|z|\tau \le \pi /\sin (\theta )\), then \(z\in \varGamma _{\theta ,\kappa }^{(\tau )}\). In this case, (C.1) implies

$$\begin{aligned}&|1-e^{z\tau }|\le C|z|\tau&\forall \, z\in \varGamma _{\theta ,\kappa } , \,\,\, |z|\tau \le \pi /\sin (\theta ),\\&|1-e^{z\tau }|\le C&\forall \, z\in \varGamma _{\theta ,\kappa } , \,\,\, |z|\tau \le \pi /\sin (\theta ) . \end{aligned}$$

The combination of the two inequalities above yields

$$\begin{aligned}&|1-e^{z\tau }|\le C|z|^{1/q}\tau ^{1/q}&\forall \, z\in \varGamma _{\theta ,\kappa } , \,\,\, |z|\tau \le \pi /\sin (\theta ). \end{aligned}$$
(C.7)

If \(z\in \varGamma _{\theta ,\kappa }\) and \(|z|\tau \ge \pi /\sin (\theta )\), then

$$\begin{aligned} |e^{z\tau }|=e^{-|z|\tau \cos (\theta )}\le e^{-\pi /\tan (\theta )}, \end{aligned}$$

which implies

$$\begin{aligned}&|1-e^{z\tau }|\le 1+e^{-\pi /\tan (\theta )} \le 2 \le 2 \bigg (\frac{\sin (\theta )}{\pi }\bigg )^{\frac{1}{q}} |z|^{1/q}\tau ^{1/q}&\forall \, z\in \varGamma _{\theta ,\kappa } , \quad |z|\tau \ge \pi /\sin (\theta ). \end{aligned}$$
(C.8)

Combining (C.7) and (C.8) yields (C.2).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunzburger, M., Li, B. & Wang, J. Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise. Numer. Math. 141, 1043–1077 (2019). https://doi.org/10.1007/s00211-019-01028-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01028-8

Navigation