Abstract
The multifidelity Monte Carlo method provides a general framework for combining cheap low-fidelity approximations of an expensive high-fidelity model to accelerate the Monte Carlo estimation of statistics of the high-fidelity model output. In this work, we investigate the properties of multifidelity Monte Carlo estimation in the setting where a hierarchy of approximations can be constructed with known error and cost bounds. Our main result is a convergence analysis of multifidelity Monte Carlo estimation, for which we prove a bound on the costs of the multifidelity Monte Carlo estimator under assumptions on the error and cost bounds of the low-fidelity approximations. The assumptions that we make are typical in the setting of similar Monte Carlo techniques. Numerical experiments illustrate the derived bounds.
Similar content being viewed by others
References
Babuška, I., Nobile, F.: A stochastic collocation method for elliptic partial dierential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)
Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)
Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)
Bierig, C., Chernov, A.: Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems. Numer. Math. 130(4), 579–613 (2015)
Bierig, C., Chernov, A.: Approximation of probability density functions by the multilevel Monte Carlo maximum entropy method. J. Comput. Phys. 314, 661–681 (2016)
Bierig, C., Chernov, A.: Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo method. Stoch. Partial Differ. Equ. Anal. Comput. 4(1), 3–40 (2016)
Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 1–123 (2004)
Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51(1), 322–352 (2013)
Cliffe, K.A., Giles, M., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)
Collier, N., Haji-Ali, A.-L., Nobile, F., von Schwerin, E., Tempone, R.: A continuation multilevel Monte Carlo algorithm. BIT Numer. Math. 55(2), 399–432 (2015)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1–3), 50–79 (2009)
Forrester, K.A., Sóbester, A.: Engineering Design Via Surrogate Modelling: A Practical Guide. Wiley, Hoboken (2008)
Franzelin, F., Diehl, P., Pflüger, D.: Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations. In: Griebel, M., Schweitzer, A.M. (eds.) Meshfree Methods for Partial Differential Equations VII, pp. 115–143. Springer, Cham (2015)
Franzelin, F., Pflüger, D.: From data to uncertainty: an efficient integrated data-driven sparse grid approach to propagate uncertainty. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and applications–Stuttgart 2014, pp. 29–49. Springer, Cham (2016)
Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18(3), 209–232 (1998)
Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)
Giles, M.: Multi-level Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)
Griebel, M., Harbrecht,H., Peters, M.: Multilevel quadrature for elliptic parametric partial differential equations on non-nested meshes. Stoch. Partial Differ. Equ. Anal. Comput. (2015). arXiv:1509.09058
Gugercin, A., Antoulas, A., Beattie, C.: \(\cal{H}_2\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008)
Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)
Haji-Ali, A.-L., Nobile, F., Tempone, R.: Multi-index Monte Carlo: when sparsity meets sampling. Numer. Math. 132(4), 767–806 (2015)
Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen, London (1964)
Harbrecht, H., Peters, M., Siebenmorgen, M.: On multilevel quadrature for elliptic stochastic partial differential equations. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications, pp. 161–179. Springer, Berlin (2013)
Harbrecht, H., Peters, M., Siebenmorgen, M.: Multilevel accelerated quadrature for PDEs with log-normally distributed diffusion coefficient. SIAM/ASA J. Uncertain. Quantif. 4(1), 520–551 (2016)
Heinrich, S.: Multilevel Monte Carlo methods. In: Margenov, S., Waniewški, J., Yalamov, P. (eds.) Large-Scale Scientific Computing, number 2179 in Lecture Notes in Computer Science, pp. 58–67. Springer, Berlin (2001)
Li, J., Xiu, D.: Evaluation of failure probability via surrogate models. J. Comput. Phys. 229(23), 8966–8980 (2010)
Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2008)
Majda, J., Gershgorin, B.: Quantifying uncertainty in climate change science through empirical information theory. Proc. Natl. Acad. Sci. USA 107(34), 14958–14963 (2010)
Nelson, B.L.: On control variate estimators. Comput. Oper. Res. 14(3), 219–225 (1987)
Ng, L., Willcox, K.: Multifidelity approaches for optimization under uncertainty. Int. J. Numer. Methods Eng. 100(10), 746–772 (2014)
Ng, L., Willcox, K.: Monte-Carlo information-reuse approach to aircraft conceptual design optimization under uncertainty. J. Aircr. 53(2), 427–438 (2016)
Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)
Pauli, S., Arbenz, P.: Determining optimal multilevel Monte Carlo parameters with application to fault tolerance. Comput. Math. Appl. 70(11), 2638–2651 (2015)
Pauli, P., Arbenz, P., Schwab, C.: Intrinsic fault tolerance of multilevel Monte Carlo methods. J. Parallel Distrib. Comput. 84, 24–36 (2015)
Peherstorfer, B., Cui, T., Marzouk, Y., Willcox, K.: Multifidelity importance sampling. Comput. Methods Appl. Mech. Eng. 300, 490–509 (2016)
Peherstorfer, B., Willcox, K.: Online adaptive model reduction for nonlinear systems via low-rank updates. SIAM J. Sci. Comput. 37(4), A2123–A2150 (2015)
Peherstorfer, B., Willcox, K., Gunzburger, M.: Optimal model management for multifidelity Monte Carlo estimation. SIAM J. Sci. Comput. 38(5), A3163–A3194 (2016)
Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, Berlin (2004)
Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 1–47 (2007)
Sirovich, L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. 45, 561–571 (1987)
Teckentrup, L., Scheichl, R., Giles, M., Ullmann, E.: Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125(3), 569–600 (2013)
Ullmann, E., Elman, H.C., Ernst, O.G.: Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems. SIAM J. Sci. Comput. 34(2), A659–A682 (2012)
Ullmann, E., Papaioannou, I.: Multilevel estimation of rare events. SIAM/ASA J. Uncertain. Quantif. 3(1), 922–953 (2015)
Ullmann, E., Powell, C.E.: Solving log-transformed random diffusion problems by stochastic Galerkin mixed finite element methods. SIAM/ASA J. Uncertain. Quantif. 3(1), 509–534 (2015)
Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken (1998)
Xiu, D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5, 242–272 (2009)
Acknowledgements
The first and the third author were supported in part by the AFOSR MURI on multi-information sources of multi-physics systems under Award Number FA9550-15-1-0038, program manager Jean-Luc Cambier, and by the United States Department of Energy Applied Mathematics Program, Awards DE-FG02-08ER2585 and DE-SC0009297, as part of the DiaMonD Multifaceted Mathematics Integrated Capability Center. The second author was supported by the US Department of Energy Office of Science grant DE-SC0009324 and the Air Force Office of Scientific Grant FA9550-15-1-0001. Some of the numerical examples were computed on the computer cluster of the Munich Centre of Advanced Computing.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Peherstorfer, B., Gunzburger, M. & Willcox, K. Convergence analysis of multifidelity Monte Carlo estimation. Numer. Math. 139, 683–707 (2018). https://doi.org/10.1007/s00211-018-0945-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-018-0945-7