iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00211-017-0939-x
Nodal finite element de Rham complexes | Numerische Mathematik Skip to main content
Log in

Nodal finite element de Rham complexes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We construct 2D and 3D finite element de Rham sequences of arbitrary polynomial degrees with extra smoothness. Some of these elements have nodal degrees of freedom and can be considered as generalisations of scalar Hermite and Lagrange elements. Using the nodal values, the number of global degrees of freedom is reduced compared with the classical Nédélec and Brezzi–Douglas–Marini finite elements, and the basis functions are more canonical and easier to construct. Our finite elements for \({H}(\mathrm {div})\) with regularity \(r=2\) coincide with the nonstandard elements given by Stenberg (Numer Math 115(1):131–139, 2010). We show how regularity decreases in the finite element complexes, so that they branch into known complexes. The standard de Rham complexes of Whitney forms and their higher order version can be regarded as the family with the lowest regularity. The construction of the new families is motivated by finite element systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold, D.N.: Differential complexes and numerical stability. In: Proceedings of the International Congress of Mathematicians. Higher Education Press, Beijing, pp. 137–157 (2002)

  2. Arnold, D.N., Awanou, G., Winther, R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77(263), 1229–1251 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods I. The de Rham complex. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, vol. 142, pp. 24–46. Springer, Berlin (2006)

  4. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods II: The elasticity complex. In: Compatible Spatial Discretizations, vol. 142, pp. 47–67. Springer, Berlin (2006)

  5. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Eng. 198(21), 1660–1672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnold, D.N., Logg, A.: Periodic table of the finite elements. SIAM News 47(9), 212 (2014)

    Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  10. Bonito, A., Guermond, J.L.: Approximation of the eigenvalue problem for the time harmonic maxwell system by continuous lagrange finite elements. Math. Comput. 80(276), 1887–1910 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyse, W.E., Lynch, D.R., Paulsen, K.D., Minerbo, G.N.: Nodal-based finite-element modeling of Maxwell’s equations. IEEE Trans. Antennas Propag. 40(6), 642–651 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C.: Forty years of the Crouzeix–Raviart element. Numer. Methods Partial Differ. Equ. 31(2), 367–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, L., Hu, J., Huang, X.: Fast auxiliary space preconditioner for linear elasticity in mixed form. Math. Comput. (2017). https://doi.org/10.1090/mcom/3285

  15. Christiansen, S.H., Hu, K.: Generalized finite element systems for smooth differential forms and Stokes problem (2016). arXiv preprint arXiv:1605.08657

  16. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christiansen, S.H., Rapetti, F.: On high order finite element spaces of differential forms. Math. Comput. 85(298), 517–548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Fu, G.: A systematic construction of finite element commuting exact sequences. SIAM J. Numer. Anal. 55(4), 1650–1688 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93(2), 239–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duan, H.Y., Jia, F., Lin, P., Tan, R.C.: The local \(L^{2}\) projected \(C^{0}\) finite element method for Maxwell problem. SIAM J. Numer. Anal. 47(2), 1274–1303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Falk, R.S., Winther, R.: Local bounded cochain projections. Math. Comput. 83(290), 2631–2656 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Falk, R.S., Winther, R.: The bubble transform: a new tool for analysis of finite element methods. Found. Comput. Math. 16(1), 297–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34(4), 1489–1508 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83(285), 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hiptmair, R.: Higher order Whitney forms. Progress Electromagn. Res. 32, 271–299 (2001)

    Article  Google Scholar 

  27. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in \( { \text{ H }}({ \text{ curl }})\) and \({ \text{ H }}(\rm { div})\) spaces. SIAM J. Numer. Anal. 45(6), 2483–2509 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, J.: Finite element approximations of symmetric tensors on simplicial grids in \(\mathbb{R}^{n}\): the higher order case. J. Comput. Math. 33, 283–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, J., Zhang, S.: A family of conforming mixed finite elements for linear elasticity on triangular grids (2014). arXiv preprint arXiv:1406.7457

  31. Hu, J., Zhang, S.: A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math. 58(2), 297–307 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hu, J., Zhang, S.: Finite element approximations of symmetric tensors on simplicial grids in \({\mathbb{R}}^{n}\): the lower order case. Math. Models Methods Appl. Sci. 26, 1649 (2016)

  33. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  34. Mardal, K.A., Tai, X.C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nédélec, J.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nédélec, J.: A new family of mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84(295), 2059–2081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Raviart, P., Thomas, J.: A mixed finite element method for second order elliptic problems. Lect. Notes Math. 606, 292–315 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saunders, D.J.: The Geometry of Jet Bundles, vol. 142. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  40. Schöberl, J., Zaglmayr, S.: High order Nédélec elements with local complete sequence properties. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005)

    Article  MATH  Google Scholar 

  41. Stenberg, R.: A nonstandard mixed finite element family. Numer. Math. 115(1), 131–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tai, X.C., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43(4), 287–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103(1), 155–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zaglmayr, S.: High order finite element methods for electromagnetic field computation. Ph.D. thesis, Johannes Kepler University (2006)

Download references

Acknowledgements

The authors are grateful to Dr. Rui Ma, Mr. Espen Sande, Prof. Ragnar Winther and Prof. Jinchao Xu for helpful communications and to the anonymous referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaibo Hu.

Additional information

Snorre H. Christiansen is supported by the European Research Council through the FP7-IDEAS-ERC Starting Grant scheme, Project 278011 STUCCOFIELDS. Jun Hu is supported by the NSFC (Projects 11625101, 91430213, 11421101). Kaibo Hu is supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 339643.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christiansen, S.H., Hu, J. & Hu, K. Nodal finite element de Rham complexes. Numer. Math. 139, 411–446 (2018). https://doi.org/10.1007/s00211-017-0939-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0939-x

Mathematics Subject Classification

Navigation