iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00211-015-0753-2
B-series methods are exactly the affine equivariant methods | Numerische Mathematik Skip to main content
Log in

B-series methods are exactly the affine equivariant methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Butcher series, also called B-series, are a type of expansion, fundamental in the analysis of numerical integration. Numerical methods that can be expanded in B-series are defined in all dimensions, so they correspond to sequences of maps—one map for each dimension. A long-standing problem has been to characterise those sequences of maps that arise from B-series. This problem is solved here: we prove that a sequence of smooth maps between vector fields on affine spaces has a B-series expansion if and only if it is affine equivariant, meaning it respects all affine maps between affine spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochev, P.B., Clint, S.: On quadratic invariants and symplectic structure. BIT Numer. Math. 34(3), 337–345 (1994)

  2. Brouder, C.: Runge–Kutta methods and renormalization. Eur. Phys. J. C-Part. Fields 12(3), 521–534 (2000)

    Article  Google Scholar 

  3. Brouder, C.: Trees, renormalization and differential equations. BIT Numer. Math. 44(3), 425–438 (2004)

  4. Butcher, J.C.: Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3(02), 185–201 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  5. Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26(117), 79–106 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2008). (ISBN 9780470753750)

    Book  MATH  Google Scholar 

  7. Calaque, D., Ebrahimi-Fard, K., Manchon, D.: Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series. Adv. Appl. Math. 47(2), 282–308 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cayley, A.: On the theory of analytic forms called trees. Philos. Mag. XIII, 172–176 (1857)

    Google Scholar 

  9. Chapoton, F., Livernet, M.: Pre-lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001(8), 395–408 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chartier, P., Hairer, E., Vilmart, G.: Algebraic structures of B-series. Found. Comput. Math. 10(4), 407–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chartier, P., Murua, A.: An algebraic theory of order. ESAIM Math. Model. Numer. Anal. 43(04), 607–630 (2009)

  12. Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103(4), 575–590 (2006)

  13. Connes, A., Kreimer, D.: Lessons from quantum field theory: Hopf algebras and spacetime geometries. Lett. Math. Phys. 48(1), 85–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gubinelli, M.: Ramification of rough paths. J. Differ. Equ. 248(4), 693–721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing 13(1), 1–15 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II: Stiff and Differential-Algebraic Problems. Springer, Berlin (2010). doi:10.1007/978-3-642-05221-7. (ISBN 978-3-642-05221-7)

  17. Hairer, E., Zbinden, C.J.: On conjugate symplecticity of B-series integrators. IMA J. Numer. Anal. 33(1), 57–79 (2013)

  18. Huťa, A.: Une amélioration de la méthode de Runge–Kutta–Nyström pour la résolution numérique des équations différentielles du premier ordre. Acta Fac. Nat. Univ. Comenian. Math. 1, 201–224 (1956)

  19. Iserles, A., Quispel, G.R.W., Tse, P.: B-series methods cannot be volume-preserving. BIT Numer. Math. 47(2), 351–378 (2007). doi:10.1007/s10543-006-0114-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. AMS Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997). (ISBN 9780821807804)

  21. McLachlan, R.I., Quispel, G.R.: Six lectures on the geometric integration of ODEs. In: Foundations of Computational Mathematics. London Mathematical Society Lecture Note Series, pp. 155–210. Cambridge University Press, Cambridge (2001a)

  22. McLachlan, R.I., Quispel, G.R.W.: What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration. Nonlinearity 14(6), 1689–1705 (2001b)

  23. Merson, R.H.: Data processing and automatic computing machines: proceedings of a conference held at Weapons Research Establishment, Salisbury, S.A., June 3rd-8th, pp. 1101-1-110-22. Weapons Research Establishment, Salisbury, South Australia (1957)

  24. Munthe-Kaas, H.Z., Verdier, O.: Aromatic Butcher Series. Foundations of Computational Mathematics (2015). doi:10.1007/s10208-015-9245-0. arXiv:1308.5824

  25. Murua, A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6(4), 387–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41(4), 7 (2008). doi:10.1088/1751-8113/41/4/045206. (ISSN 1751-8113; 1751-8121/e)

Download references

Acknowledgments

Klas Modin is supported by the Swedish Research Council (Contract VR-2012-335). Olivier Verdier is supported by the J.C. Kempe memorial fund (Grant No. SMK-1238). Robert McLachlan is supported by the Marsden Fund of the Royal Society of New Zealand. We express our greatest gratitude to the referees for their numerous useful remarks, in particular for noticing that one can avoid the assumption of locality. We are also grateful to Alexander Schmeding for giving us the right functional analytic framework of compactly supported vector fields in the definition of an integrator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Verdier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLachlan, R.I., Modin, K., Munthe-Kaas, H. et al. B-series methods are exactly the affine equivariant methods. Numer. Math. 133, 599–622 (2016). https://doi.org/10.1007/s00211-015-0753-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0753-2

Mathematics Subject Classification

Navigation