Abstract
Butcher series, also called B-series, are a type of expansion, fundamental in the analysis of numerical integration. Numerical methods that can be expanded in B-series are defined in all dimensions, so they correspond to sequences of maps—one map for each dimension. A long-standing problem has been to characterise those sequences of maps that arise from B-series. This problem is solved here: we prove that a sequence of smooth maps between vector fields on affine spaces has a B-series expansion if and only if it is affine equivariant, meaning it respects all affine maps between affine spaces.
Similar content being viewed by others
References
Bochev, P.B., Clint, S.: On quadratic invariants and symplectic structure. BIT Numer. Math. 34(3), 337–345 (1994)
Brouder, C.: Runge–Kutta methods and renormalization. Eur. Phys. J. C-Part. Fields 12(3), 521–534 (2000)
Brouder, C.: Trees, renormalization and differential equations. BIT Numer. Math. 44(3), 425–438 (2004)
Butcher, J.C.: Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3(02), 185–201 (1963)
Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26(117), 79–106 (1972)
Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2008). (ISBN 9780470753750)
Calaque, D., Ebrahimi-Fard, K., Manchon, D.: Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series. Adv. Appl. Math. 47(2), 282–308 (2011)
Cayley, A.: On the theory of analytic forms called trees. Philos. Mag. XIII, 172–176 (1857)
Chapoton, F., Livernet, M.: Pre-lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001(8), 395–408 (2001)
Chartier, P., Hairer, E., Vilmart, G.: Algebraic structures of B-series. Found. Comput. Math. 10(4), 407–427 (2010)
Chartier, P., Murua, A.: An algebraic theory of order. ESAIM Math. Model. Numer. Anal. 43(04), 607–630 (2009)
Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103(4), 575–590 (2006)
Connes, A., Kreimer, D.: Lessons from quantum field theory: Hopf algebras and spacetime geometries. Lett. Math. Phys. 48(1), 85–96 (1999)
Gubinelli, M.: Ramification of rough paths. J. Differ. Equ. 248(4), 693–721 (2010)
Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing 13(1), 1–15 (1974)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II: Stiff and Differential-Algebraic Problems. Springer, Berlin (2010). doi:10.1007/978-3-642-05221-7. (ISBN 978-3-642-05221-7)
Hairer, E., Zbinden, C.J.: On conjugate symplecticity of B-series integrators. IMA J. Numer. Anal. 33(1), 57–79 (2013)
Huťa, A.: Une amélioration de la méthode de Runge–Kutta–Nyström pour la résolution numérique des équations différentielles du premier ordre. Acta Fac. Nat. Univ. Comenian. Math. 1, 201–224 (1956)
Iserles, A., Quispel, G.R.W., Tse, P.: B-series methods cannot be volume-preserving. BIT Numer. Math. 47(2), 351–378 (2007). doi:10.1007/s10543-006-0114-8
Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. AMS Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997). (ISBN 9780821807804)
McLachlan, R.I., Quispel, G.R.: Six lectures on the geometric integration of ODEs. In: Foundations of Computational Mathematics. London Mathematical Society Lecture Note Series, pp. 155–210. Cambridge University Press, Cambridge (2001a)
McLachlan, R.I., Quispel, G.R.W.: What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration. Nonlinearity 14(6), 1689–1705 (2001b)
Merson, R.H.: Data processing and automatic computing machines: proceedings of a conference held at Weapons Research Establishment, Salisbury, S.A., June 3rd-8th, pp. 1101-1-110-22. Weapons Research Establishment, Salisbury, South Australia (1957)
Munthe-Kaas, H.Z., Verdier, O.: Aromatic Butcher Series. Foundations of Computational Mathematics (2015). doi:10.1007/s10208-015-9245-0. arXiv:1308.5824
Murua, A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6(4), 387–426 (2006)
Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41(4), 7 (2008). doi:10.1088/1751-8113/41/4/045206. (ISSN 1751-8113; 1751-8121/e)
Acknowledgments
Klas Modin is supported by the Swedish Research Council (Contract VR-2012-335). Olivier Verdier is supported by the J.C. Kempe memorial fund (Grant No. SMK-1238). Robert McLachlan is supported by the Marsden Fund of the Royal Society of New Zealand. We express our greatest gratitude to the referees for their numerous useful remarks, in particular for noticing that one can avoid the assumption of locality. We are also grateful to Alexander Schmeding for giving us the right functional analytic framework of compactly supported vector fields in the definition of an integrator.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
McLachlan, R.I., Modin, K., Munthe-Kaas, H. et al. B-series methods are exactly the affine equivariant methods. Numer. Math. 133, 599–622 (2016). https://doi.org/10.1007/s00211-015-0753-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-015-0753-2