Abstract
We consider the application of multilevel Monte Carlo methods to elliptic PDEs with random coefficients. We focus on models of the random coefficient that lack uniform ellipticity and boundedness with respect to the random parameter, and that only have limited spatial regularity. We extend the finite element error analysis for this type of equation, carried out in Charrier et al. (SIAM J Numer Anal, 2013), to more difficult problems, posed on non-smooth domains and with discontinuities in the coefficient. For this wider class of model problem, we prove convergence of the multilevel Monte Carlo algorithm for estimating any bounded, linear functional and any continuously Fréchet differentiable non-linear functional of the solution. We further improve the performance of the multilevel estimator by introducing level dependent truncations of the Karhunen–Loève expansion of the random coefficient. Numerical results complete the paper.
Similar content being viewed by others
References
Barrett, J.W., Elliott, C.E.: Total flux estimates for a finite-element approximation of elliptic equations. IMA J. Numer. Anal. 7, 129–148 (1987)
Barth, A., Schwab, Ch., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDE’s with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)
Bourlard, M., Dauge, M., Lubama, M.S., Nicaise, S.: Coefficients of the singularities of elliptic boundary value problems in domains with conical points. III: Finite element methods on polygonal domains. SIAM J. Numer. Anal. 29(1), 136–155 (1992)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edn, vol. 15. Springer, Berlin (2008)
Charrier, J.: Strong and weak error estimates for the solutions of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal 50(1), 216–246 (2012)
Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51(1), 322–352 (2013)
Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4), 1200–1216 (2001)
Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)
Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal. 33(3), 627–649 (1999)
Dereich, S., Heidenreich, F.: A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations. Stoch. Process. Appl. 121(7), 1565–1587 (2011)
Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18(4), 1088–1107 (1997)
Douglas, J., Dupont, T., Wheeler, M.F.: A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems. RAIRO Modèl. Math. Anal. Numèr. 2, 47–59 (1974)
Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)
Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin, Reprint of the 1998 edition (2001)
Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Monte Carlo and Quasi-Monte Carlo methods 2006, pp. 343–358. Springer, Berlin (2007)
Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 256, 981–986 (2008)
Giles, M.B., Reisinger, C.: Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance. SIFIN 1(3), 575–592 (2012)
Giles, M.B., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica, vol., pp. 145–236. Cambridge University Press, Cambridge (2002)
Gittelson, C.J., Könnö, J., Schwab, Ch., Stenberg, R.: The multilevel Monte Carlo finite element method for a stochastic Brinkman problem. SAM Research Report 2011–31, ETH Zurich (2011)
Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230(10), 3668–3694 (2011)
Graham, I.G., Scheichl, R., Ullmann, E.: Mixed Finite Element analysis of lognormal diffusion and multilevel Monte Carlo methods, In preparation (2013)
Graubner, S.: Multi-level Monte Carlo Methoden für stochastische partielle Differentialgleichungen. Diploma thesis, TU Darmstadt (2008). http://people.maths.ox.ac.uk/gilesm/files/Diplomarbeit.pdf
Grisvard, P.: Elliptic Problems in Non-Smooth Domains. Pitman, Boston (1985)
Grisvard, P.: Singularities in boundary value problems. In: Researh Notes in Mathematics. Springer, Berlin (1992)
Hackbusch, W.: Elliptic differential equations. In: Springer Series in Computational Mathematics, vol. 18. Springer, Berlin (2010)
Heinrich, S.: Multilevel Monte Carlo methods. In: Lecture Notes in Computer Science, vol. 2179, pp. 3624–3651. Springer, Berin (2001)
Hoel, H., von Schwerin, E., Szepessy, A., Tempone, R.: Adaptive multilevel Monte Carlo simulation. In: Engquist, B., Runborg, O., Tsai, Y.-H. R. (eds.) Numerical Analysis of Multiscale Computations. Lecture Notes in Computational Science and Engineering, vol. 82, pp. 217–234. Springer, Berlin (2012)
Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)
Kloeden, P., Neuenkirch, A., Pavani, R.: Multilevel Monte Carlo for stochastic differential equations with additive fractional noise. Ann. App. Probab. 189, 255–276 (2011)
Nicaise, S., Sändig, A.M.: General interface problems - I. Math. Methods Appl. Sci. 17(6), 395–429 (1994)
Petzoldt, M.: Regularity and error estimators for elliptic problems with discontinuous coefficients. PhD thesis, WIAS Berlin (2001). http://webdoc.sub.gwdg.de/ebook/diss/2003/fu-berlin/2001/111/
Pierce, N.A., Giles, M.B.: Adjoint and defect error bounding and correction for functional estimates. J. Comput. Phys. 200, 769–794 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Teckentrup, A.L., Scheichl, R., Giles, M.B. et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125, 569–600 (2013). https://doi.org/10.1007/s00211-013-0546-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-013-0546-4