iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00211-008-0189-z
Analysis of linear and quadratic simplicial finite volume methods for elliptic equations | Numerische Mathematik Skip to main content
Log in

Analysis of linear and quadratic simplicial finite volume methods for elliptic equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is devoted to analysis of some convergent properties of both linear and quadratic simplicial finite volume methods (FVMs) for elliptic equations. For linear FVM on domains in any dimensions, the inf-sup condition is established in a simple fashion. It is also proved that the solution of a linear FVM is super-close to that of a relevant finite element method (FEM). As a result, some a posterior error estimates and also algebraic solvers for FEM are extended to FVM. For quadratic FVM on domains in two dimensions, the inf-sup condition is established under some weak condition on the grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems. SIAM J. on Numer. Anal. 39, 1749–1779 (2003)

    Article  MathSciNet  Google Scholar 

  2. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method, Univ. Maryland, College Park, Washington DC, Techinical Note BN-748 (1972)

  3. Bank R.E., Rose D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bank R.E., Xu J.: Asymptotic exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bank R.E., Xu J.: Asymptotic exact a posteriori error estimators, Part II: General Unstructured Grids. SIAM J. Numer. Anal. 41, 2313–2332 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bramble J.H., Pasciak J.E., Xu J.: Parallel multilevel preconditioners. Math. Comput. 55, 1–22 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer-Verlag (1991)

  8. Cai Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cai Z., Douglas J., Park M.: Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math. 19, 3–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carstensen C., Lazarov R., Tomov S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen Z.: The error estimate of generalized difference methods of 3rd-order Hermite type for elliptic partial differential equations. Northeast. Math. 8, 127–135 (1992)

    MATH  MathSciNet  Google Scholar 

  12. Chou S.H., Tang S.: Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach. SIAM J. Numer. Anal 38, 660–668 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  14. Delanaye, M., Essers, J.A.: Finite Volume Scheme with Quadratic Reconstruction on Unstructured Adaptive Meshes Applied to Turbomachinery Flows, ASME Paper 95-GT-234 presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, June 5–8, also in the ASME Journal of Engineering for Power (1995)

  15. Emonot, Ph.: Methodes de volumes elements finis: applications aux equations de Navier-Stokes et resultats de convergence, Dissertation, Lyon (1992)

  16. Ewing R.E., Lin T., Lin Y.: On the accuracy of finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eymard, R., Gallouet, T., Herbin, R.: Finite Volume Methods, in Handbook of Numerical Analysis VII, North-Holland, Amsterdam, pp. 713–1020 (2000)

  18. Hackbusch W.: On first and second order box methods. Computing 41, 277–296 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hyman J.M., Knapp R., Scovel J.C.: High order finite volume approximations of differential operators on nonuniform grids. Physica D 60, 112–138 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liebau F.: The finite volume element method with quadratic basis Function. Computing 57, 281–299 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, R., Chen, Z., Wu, W.: The Generalized Difference Methods for Partial Differential Equations (Numerical Analysis of Finite Volume Methods). Marcel Dikker, New York (2000)

  22. Li, Y., Shu, S., Xu, Y., Zou, Q.: Multilevel Preconditioning for Finite Volume Element Methods (in Preparation)

  23. Ollivier-Gooch C., Altena M.V.: A high-order-accurate unstructured mesh finite-volume scheme for the advection–diffusion Equation. J. Comput. Phys. 181, 729–752 (2002)

    Article  MATH  Google Scholar 

  24. Plexousakis M., Zouraris G.: On the construction and analysis of high order locally conservative finite volume type methods for one dimensional elliptic problems. SIAM J. Numer. Anal. 42, 1226–1260 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Patanker S.V.: Numerical Heat Transfer and Fluid Flow. Ser. Comput. Methods Mech. Thermal Sci. McGraw-Hill, New York (1980)

    Google Scholar 

  26. Rogiest, P., Geuzaine, Ph., Essers, J.A., Delanaye, M.: Implicit High-Order Finite-Volume Euler Solver Using Multi-Block Structured Grids. presented at the 12th AIAA CFD Conf., San Diego, June (1995)

  27. Rogiest, P., Essers, J.A., Leonard, O.: Application of High-Order Upwind Finite-Volume Scheme to 2D Cascade Flows Using a Multi-Block Approach, International Conf. on Air Breathing Engines, September 1995, ISABE Paper 95-7057 (1995)

  28. Shu C.: High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. J. Comput. Fluid Dyn. 17, 107–118 (2003)

    Article  MATH  Google Scholar 

  29. Sun, P., Xue, G., Wang, C., Xu, J.: A combined finite element-upwind finite volume- Newton’s method for liquid-feed direct methanol fuel cell simulations. Proceedings of Sixth International Fuel Cell Science, Engineering and Technology Conference 8, Denver, Colorado, USA (2008)

  30. Tian M., Chen Z.: Quadratic element generalized differential methods for elliptic equations. Numer. Math. J. Chinese Univ. 13, 99–113 (1991)

    MATH  MathSciNet  Google Scholar 

  31. Wu H.J., Li R.H.: Error Estimates for fnite volume element methods for general second order elliptic problem. Numer. Meth. PDEs 19, 693–708 (2003)

    MATH  Google Scholar 

  32. Xu J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Xu J., Zhang Z.M.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2004)

    MATH  Google Scholar 

  34. Xu J., Zikatanov L.: Some observations on Babuška and Brezzi theories. Numer. Math. 94, 195–202 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates, Part I: the recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364. MR 93c:73098 (1992)

    Google Scholar 

  36. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates, Part II: The recovery technique. Int. J. Numer. Methods Eng. 33, 1365–1382. MR 93c:73099 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Zou, Q. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009). https://doi.org/10.1007/s00211-008-0189-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0189-z

Mathematics Subject Classification (2000)

Navigation