Abstract
This paper is devoted to analysis of some convergent properties of both linear and quadratic simplicial finite volume methods (FVMs) for elliptic equations. For linear FVM on domains in any dimensions, the inf-sup condition is established in a simple fashion. It is also proved that the solution of a linear FVM is super-close to that of a relevant finite element method (FEM). As a result, some a posterior error estimates and also algebraic solvers for FEM are extended to FVM. For quadratic FVM on domains in two dimensions, the inf-sup condition is established under some weak condition on the grid.
Similar content being viewed by others
References
Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems. SIAM J. on Numer. Anal. 39, 1749–1779 (2003)
Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method, Univ. Maryland, College Park, Washington DC, Techinical Note BN-748 (1972)
Bank R.E., Rose D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)
Bank R.E., Xu J.: Asymptotic exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)
Bank R.E., Xu J.: Asymptotic exact a posteriori error estimators, Part II: General Unstructured Grids. SIAM J. Numer. Anal. 41, 2313–2332 (2003)
Bramble J.H., Pasciak J.E., Xu J.: Parallel multilevel preconditioners. Math. Comput. 55, 1–22 (1990)
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer-Verlag (1991)
Cai Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)
Cai Z., Douglas J., Park M.: Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math. 19, 3–33 (2003)
Carstensen C., Lazarov R., Tomov S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)
Chen Z.: The error estimate of generalized difference methods of 3rd-order Hermite type for elliptic partial differential equations. Northeast. Math. 8, 127–135 (1992)
Chou S.H., Tang S.: Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach. SIAM J. Numer. Anal 38, 660–668 (2000)
Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Delanaye, M., Essers, J.A.: Finite Volume Scheme with Quadratic Reconstruction on Unstructured Adaptive Meshes Applied to Turbomachinery Flows, ASME Paper 95-GT-234 presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, June 5–8, also in the ASME Journal of Engineering for Power (1995)
Emonot, Ph.: Methodes de volumes elements finis: applications aux equations de Navier-Stokes et resultats de convergence, Dissertation, Lyon (1992)
Ewing R.E., Lin T., Lin Y.: On the accuracy of finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)
Eymard, R., Gallouet, T., Herbin, R.: Finite Volume Methods, in Handbook of Numerical Analysis VII, North-Holland, Amsterdam, pp. 713–1020 (2000)
Hackbusch W.: On first and second order box methods. Computing 41, 277–296 (1989)
Hyman J.M., Knapp R., Scovel J.C.: High order finite volume approximations of differential operators on nonuniform grids. Physica D 60, 112–138 (1992)
Liebau F.: The finite volume element method with quadratic basis Function. Computing 57, 281–299 (1996)
Li, R., Chen, Z., Wu, W.: The Generalized Difference Methods for Partial Differential Equations (Numerical Analysis of Finite Volume Methods). Marcel Dikker, New York (2000)
Li, Y., Shu, S., Xu, Y., Zou, Q.: Multilevel Preconditioning for Finite Volume Element Methods (in Preparation)
Ollivier-Gooch C., Altena M.V.: A high-order-accurate unstructured mesh finite-volume scheme for the advection–diffusion Equation. J. Comput. Phys. 181, 729–752 (2002)
Plexousakis M., Zouraris G.: On the construction and analysis of high order locally conservative finite volume type methods for one dimensional elliptic problems. SIAM J. Numer. Anal. 42, 1226–1260 (2004)
Patanker S.V.: Numerical Heat Transfer and Fluid Flow. Ser. Comput. Methods Mech. Thermal Sci. McGraw-Hill, New York (1980)
Rogiest, P., Geuzaine, Ph., Essers, J.A., Delanaye, M.: Implicit High-Order Finite-Volume Euler Solver Using Multi-Block Structured Grids. presented at the 12th AIAA CFD Conf., San Diego, June (1995)
Rogiest, P., Essers, J.A., Leonard, O.: Application of High-Order Upwind Finite-Volume Scheme to 2D Cascade Flows Using a Multi-Block Approach, International Conf. on Air Breathing Engines, September 1995, ISABE Paper 95-7057 (1995)
Shu C.: High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. J. Comput. Fluid Dyn. 17, 107–118 (2003)
Sun, P., Xue, G., Wang, C., Xu, J.: A combined finite element-upwind finite volume- Newton’s method for liquid-feed direct methanol fuel cell simulations. Proceedings of Sixth International Fuel Cell Science, Engineering and Technology Conference 8, Denver, Colorado, USA (2008)
Tian M., Chen Z.: Quadratic element generalized differential methods for elliptic equations. Numer. Math. J. Chinese Univ. 13, 99–113 (1991)
Wu H.J., Li R.H.: Error Estimates for fnite volume element methods for general second order elliptic problem. Numer. Meth. PDEs 19, 693–708 (2003)
Xu J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)
Xu J., Zhang Z.M.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2004)
Xu J., Zikatanov L.: Some observations on Babuška and Brezzi theories. Numer. Math. 94, 195–202 (2003)
Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates, Part I: the recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364. MR 93c:73098 (1992)
Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates, Part II: The recovery technique. Int. J. Numer. Methods Eng. 33, 1365–1382. MR 93c:73099 (1992)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xu, J., Zou, Q. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009). https://doi.org/10.1007/s00211-008-0189-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0189-z