iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00211-007-0074-1
Domain decomposition for multiscale PDEs | Numerische Mathematik Skip to main content
Log in

Domain decomposition for multiscale PDEs

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both the deterministic and (Monte–Carlo simulated) stochastic cases. We consider preconditioners which combine local solves on general overlapping subdomains together with a global solve on a general coarse space of functions on a coarse grid. We perform a new analysis of the preconditioned matrix, which shows rather explicitly how its condition number depends on the variable coefficient in the PDE as well as on the coarse mesh and overlap parameters. The classical estimates for this preconditioner with linear coarsening guarantee good conditioning only when the coefficient varies mildly inside the coarse grid elements. By contrast, our new results show that, with a good choice of subdomains and coarse space basis functions, the preconditioner can still be robust even for large coefficient variation inside domains, when the classical method fails to be robust. In particular our estimates prove very precisely the previously made empirical observation that the use of low-energy coarse spaces can lead to robust preconditioners. We go on to consider coarse spaces constructed from multiscale finite elements and prove that preconditioners using this type of coarsening lead to robust preconditioners for a variety of binary (i.e., two-scale) media model problems. Moreover numerical experiments show that the new preconditioner has greatly improved performance over standard preconditioners even in the random coefficient case. We show also how the analysis extends in a straightforward way to multiplicative versions of the Schwarz method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarnes J., Hou T.Y. (2002). Multiscale domain decomposition methods for elliptic problems with high aspect ratios. Acta Math. Appl.Sinica Engl. Ser. 18: 63–76

    Article  MATH  MathSciNet  Google Scholar 

  2. Cai X., Nielsen B.F., Tveito A. (1999). An analysis of a preconditioner for the discretized pressure equation arising in reservoir simulation. IMA J Numer. Anal. 19: 291–316

    Article  MATH  MathSciNet  Google Scholar 

  3. Carvalho L.M., Giraud L., Le Tallec P. (2001). Algebraic two-level preconditioners for the Schur complement method. SIAM J. Sci. Comp. 22: 1987–2005

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan T.F., Smith B.F., Zou J. (1996). Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids. Numer. Math. 73: 149–167

    Article  MATH  MathSciNet  Google Scholar 

  5. Chan T.F., Mathew T. (1994). Domain Decomposition Methods, Acta Numerica 1994. Cambridge University Press, Cambridge

    Google Scholar 

  6. Chen J., Cui J. (2004). A multiscale finite element method for elliptic problems with highly oscillating coefficients. Appl. Numer. Math. 50: 1–13

    Article  MATH  MathSciNet  Google Scholar 

  7. Cliffe K.A., Graham I.G., Scheichl R., Stals L. (2000). Parallel computation of flow in heterogeneous media modelled by mixed finite elements. J. Comp. Phys. 164: 258–282

    Article  MATH  MathSciNet  Google Scholar 

  8. De Zeeuw P.M. (1990). Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comp. Appl. Math. 33: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  9. Dohrmann, C.R., Klawonn, A., Widlund, O.B.: Extending the theory for domain decomposition to irregular subdomains. Submitted to Lect. Notes Comput. Sci. Eng. (17th International Conference on Domain Decomposition Methods in Science and Engineering, Strobl, Austria, July 2006)

  10. Dryja M., Widlund O.B. (1994). Domain decomposition algorithms with small overlap. SIAM J. Sci. Comp. 15: 604–620

    Article  MATH  MathSciNet  Google Scholar 

  11. Dryja, M., Widlund, O.B.: Some recent results on Schwarz type domain decomposition algorithms. In: Mandel, J., Farhat, C., Cai, X.-C. (eds.) Proceedings of 6th International Confererence on Domain Decomposition Methods, Como, Italy, 1992. AMS Contemporary Math. 157, 53–62 (1994)

  12. Dryja M., Sarkis M.V., Widlund O.B. (1996). Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72: 313–348

    Article  MATH  MathSciNet  Google Scholar 

  13. E W., Engquist B. (2004). Analysis of the heterogeneous multiscale method for elliptic homogenisation problems. J. Am. Math. Soc. 18: 121–156

    Article  Google Scholar 

  14. Engquist B., Luo E. (1997). Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients. SIAM J. Numer. Anal. 34: 2254–2273

    Article  MATH  MathSciNet  Google Scholar 

  15. Giraud L., Guevara F., Tuminaro R.S., Vasquez (2003). Grid transfer operators for highly-variable coefficient problems in two-level non-overlapping domain decomposition methods. Numer. Linear Algebra Appl. 10: 467–484

    Article  MATH  MathSciNet  Google Scholar 

  16. Graham I.G., Hagger M.J. (1999). Unstructured additive Schwarz-CG method for elliptic problems with highly discontinuous coefficients. SIAM J. Sci. Comp. 20: 2041–2066

    Article  MATH  MathSciNet  Google Scholar 

  17. Graham, I.G., Hagger, M.J.: Additive Schwarz, CG and discontinuous coefficients. In: Bjørstad, P., Espedal, M., Keyes, D.E. (eds.) Proceedings of 9th International Conference on Domain Decomposition Methods, Bergen, Norway, 1996. Domain Decomposition Press, Bergen (1998)

  18. Graham, I.G., Lechner, P.O.: Domain Decomposition for heterogeneous media, In: Widlund, O.B., Keyes, D.E. (eds.) Proceedings of 16th International Conference on Domain Decomposition Methods, New York (2005). Springer Lecture Notes in Computational Science and Engineering 55 (2007). Available electronically at http://cims.nyu.edu/dd16/

  19. Graham, I.G., Scheichl, R.: Robust Domain Decomposition Algorithms for Multiscale PDEs. Numer. Methods Partial Differ. Equ. (2007, to appear)

  20. Graham, I.G., Scheichl, R.: Coefficient-explicit condition number bounds for overlapping additive Schwarz. Submitted to Lect. Notes Comput. Sci. Eng. (17th International Conference on Domain Decomposition Methods in Science and Engineering, Strobl, Austria, July 2006)

  21. Hou T.Y., Wu X.-H. (1997). A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134: 169–189

    Article  MATH  MathSciNet  Google Scholar 

  22. Hou T.Y., Wu X.-H., Cai Z. (1999). Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68: 913–943

    Article  MATH  MathSciNet  Google Scholar 

  23. Jones J.E., Vassilevski P.S. (2001). AMGe based on element agglomeration. SIAM J. Sci. Comput. 23: 109–133

    Article  MATH  MathSciNet  Google Scholar 

  24. Jüngel A., Unterreiter A. (2005). Discrete minimum and maximum principles for finite element approximations of non-monotone elliptic equations. Numer. Math. 99: 485–508

    Article  MATH  MathSciNet  Google Scholar 

  25. Kozintsev, B., Kedem, B.: Gaussian package, University of Maryland. Available at http://www.math.umd.edu/bnk/bak/generate.cgi (1999)

  26. Lechner, P.O.: Iterative methods for heterogeneous media. PhD Thesis, University of Bath (2006)

  27. McLean W. (2000). Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  28. Neuss N., Jäger W., Wittum G. (2001). Homogenization and multigrid. Computing 66: 1–26

    Article  MATH  MathSciNet  Google Scholar 

  29. Sarkis, M.: Partition of unity coarse spaces: Enhanced versions, discontinuous coefficients, and applications to elasticity. In: Herrera, I., Keyes, D.E., Widlund, O.B., Yates, R., (eds.) Proceedings of 14th International Conference Domain Decomposition Methods, DDM. org (2003)

  30. Scheichl, R., Vainikko, E.: Robust aggregation-based coarsening for additive Schwarz in the case of highly variable coefficients. In: Wesseling, P., Onate, E., Periaux, J. (eds.) Proceedings of European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands (2006)

  31. Scheichl, R., Vainikko, E.: Additive Schwarz and aggregation-based coarsening for elliptic problems with highly variable coefficients, submitted, BICS preprint 9/06 (2006). Available electronically at http://www.bath.ac.uk/math-sci/BICS/

  32. Scott L.R., Zhang S. (1990). Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54: 483–493

    Article  MATH  MathSciNet  Google Scholar 

  33. Toselli A., Widlund O. (2005). Domain Decomposition Methods Algorithms and Theory. Springer, Heidelberg

    MATH  Google Scholar 

  34. Vuik K., Segal A., Meijerink J.A. (2000). An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput. Phys. 21: 1632–1649

    Google Scholar 

  35. Wan W.L., Chan T.F., Smith B. (2000). An energy-minimizing interpolation for robust multigrid methods. SIAM J. Sci. Comput. 21: 1632–1649

    Article  MATH  MathSciNet  Google Scholar 

  36. Xu J., Zikatanov L. (1999). A monotone finite element scheme for convection–diffusion equations. Math. Comp. 68: 1426–1446

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Graham.

Additional information

We would like to thank Bill McLean for very useful discussions concerning this work. We would also like to thank Maksymilian Dryja for helping us to improve the result in Theorem 4.3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, I.G., Lechner, P.O. & Scheichl, R. Domain decomposition for multiscale PDEs. Numer. Math. 106, 589–626 (2007). https://doi.org/10.1007/s00211-007-0074-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0074-1

Mathematics Subject Classification (2000)

Navigation