iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00186-007-0186-5
An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization | Mathematical Methods of Operations Research Skip to main content

Advertisement

Log in

An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper a new algorithm for minimizing locally Lipschitz functions is developed. Descent directions in this algorithm are computed by solving a system of linear inequalities. The convergence of the algorithm is proved for quasidifferentiable semismooth functions. We present the results of numerical experiments with both regular and nonregular objective functions. We also compare the proposed algorithm with two different versions of the subgradient method using the results of numerical experiments. These results demonstrate the superiority of the proposed algorithm over the subgradient method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagirov AM and Gasanov AA (1995). A method of approximating a quasidifferential. J Comput Math Math Phys 35(4): 403–409

    MATH  MathSciNet  Google Scholar 

  • Bagirov AM (1998). Discrete gradient as applied to the minimization of Lipschitzian functions. J Comput Math Math Phys 38(10): 1556–1565

    MATH  MathSciNet  Google Scholar 

  • Bagirov AM (1999). Minimization methods for one class of nonsmooth functions and calculation of semi-equilibrium prices. In: Eberhard, A et al (eds) Progress in optimization: contribution from Australasia, pp 147–175. Kluwer, Dordrecht

    Google Scholar 

  • Bagirov AM (2002). A method for minimizing of quasidifferentiable functions. Optim Methods Software 17(1): 31–60

    Article  MATH  MathSciNet  Google Scholar 

  • Bagirov AM (2003). Continuous subdifferential approximations and their applications. J Math Sci 115(5): 2567–2609

    Article  MATH  MathSciNet  Google Scholar 

  • Bagirov AM, Ghosh M and Webb D (2006). A derivative-free method for linearly constrained nonsmooth optimization. J Ind Manage Optim 2(3): 319–338

    MATH  MathSciNet  Google Scholar 

  • Bagirov AM, Karasozen B, Sezer M (2008) Discrete gradient method: a derivative free method for nonsmooth optimization. J Optim Theory Appl 136(3)

  • Bagirov AM, Rubinov AM, Soukhoroukova NV and Yearwood J (2003). Supervised and unsupervised data classification via nonsmooth and global optimisation. TOP: Spanish Oper Res J 11(1): 1–93

    MATH  MathSciNet  Google Scholar 

  • Bagirov AM and Yearwood J (2006). A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. Eur J Oper Res 170(2): 578–596

    Article  MATH  MathSciNet  Google Scholar 

  • Bertsekas DP (1999). Nonlinear programming, 2nd edn. Athena Scientific, Nashua

    MATH  Google Scholar 

  • Burke JV, Lewis AS and Overton ML (2005). A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J Optim 15(3): 751–779

    Article  MATH  MathSciNet  Google Scholar 

  • Clarke FH (1983). Optimization and nonsmooth analysis. Wiley, New York

    MATH  Google Scholar 

  • Demyanov VF and Rubinov AM (1995). Constructive nonsmooth analysis. Peter Lang, Frankfurt am Main

    MATH  Google Scholar 

  • Frangioni A (2002). Generalized bundle methods. SIAM J Optim 113(1): 117–156

    Article  MathSciNet  Google Scholar 

  • Golikov AI and Evtushenko YuG (2001). A new method for solving systems of linear equalities and inequalities. Dokl Math 64(3): 370–373

    Google Scholar 

  • Gaudioso M and Monaco MF (1982). A bundle type approach to the unconstrained minimization of convex nonsmooth functions. Math Program 23: 216–226

    Article  MATH  MathSciNet  Google Scholar 

  • Hiebert K (1980). Solving systems of linear equations and inequalities. SIAM J Numer Anal 17(3): 447–464

    Article  MATH  MathSciNet  Google Scholar 

  • Hiriart-Urruty JB and Lemarechal C (1993). Convex analysis and minimization algorithms, vol 1, 2. Springer, New York

    Google Scholar 

  • Kiwiel KC (1985). Methods of descent for nondifferentiable optimization. Lecture Notes in Mathematics, vol 1133. Springer, Berlin

    Google Scholar 

  • Luksan L, Vlcek J (2000) Test problems for nonsmooth unconstrained and linearly constrained optimization, Technical Report No. 78, Institute of Computer Science, Academy of Sciences of the Czech Republic

  • Makela MM and Neittaanmaki P (1992). Nonsmooth optimization. World Scientific, Singapore

    Google Scholar 

  • Mifflin R (1977a). Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim 15(6): 959–972

    Article  MATH  MathSciNet  Google Scholar 

  • Mifflin R (1977b). An algorithm for constrained optimization with semismooth functions.. Math Oper Res 2: 191–207

    Article  MATH  MathSciNet  Google Scholar 

  • Polak E and Royset JO (2003). Algorithms for finite and semi-infinite min–max–min problems using adaptive smoothing techniques. J Optim Theory Appl 119(3): 421–457

    Article  MATH  MathSciNet  Google Scholar 

  • Polyak B (1985). Introduction to optimization. Optim Software, New York

    Google Scholar 

  • Shor NZ (1985). Minimization methods for non-differentiable functions. New York, Berlin

    MATH  Google Scholar 

  • Wolfe PH (1975). A method of conjugate subgradients of minimizing nondifferentiable convex functions. Math Program Study 3: 145–173

    MathSciNet  Google Scholar 

  • Zowe J (1985). Nondifferentiable optimization: a motivation and a short introduction into the subgradient and the bundle concept. In: Schittkowski, K (eds) Computational mathematical programming. NATO SAI Series, vol 15, pp 323–356. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Bagirov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagirov, A., Ganjehlou, A.N. An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization. Math Meth Oper Res 67, 187–206 (2008). https://doi.org/10.1007/s00186-007-0186-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-007-0186-5

Keywords

Mathematics Subject Classification (2000)

Navigation