iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00158-013-0978-6
Topology optimization approaches | Structural and Multidisciplinary Optimization Skip to main content
Log in

Topology optimization approaches

A comparative review

  • Review Article
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Topology optimization has undergone a tremendous development since its introduction in the seminal paper by Bendsøe and Kikuchi in 1988. By now, the concept is developing in many different directions, including “density”, “level set”, “topological derivative”, “phase field”, “evolutionary” and several others. The paper gives an overview, comparison and critical review of the different approaches, their strengths, weaknesses, similarities and dissimilarities and suggests guidelines for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The one material formulation can easily be extended to multiple material phases—see e.g. Sigmund and Torquato (1997); Bendsøe and Sigmund (1999); Sigmund (2001b).

  2. Although the discretized optimization problem (2) is a solid-void optimization problem it is for computational reasons common to treat it as a “solid-almost void” problem, meaning that void is mimicked by a very soft material, hence avoiding to have to remesh or renumber the finite element mesh in between iterations. Hence throughout the paper, unless otherwise noted, \(\rho =0\) must be read as \(\rho =\rho _{min}\), where \(\rho _{min}\) is a small number.

  3. Actually, topology optimization approaches often work best with active volume constraints. Depending on the physical problem considered, superfluous material may create non-physical effects or may obstruct the free movement of structural boundaries in turn restricting convergence to (near)global minima.

  4. Note that there exist approaches that use multiple projections, e.g. multiphase projection (Guest 2009b) and advanced morphology filtering (Sigmund 2007), however, we include them under “three-field approaches” by counting the projection steps as one, no matter how many times they are applied.

  5. The compliance increases until the volume fraction has been reached and decreases after. Hence, if the average energy before and after feasibility becomes equal the algorithm terminates prematurely.

  6. These problems can partially be avoided by performing the optimization on consecutively refined meshes, however, for many physical problems that are more complex than simple compliance minimization (c.f. wave propagation problems as e.g. reviewed in Jensen andSigmund 2011) and electrostatic actuators (Qian and Sigmund 2012) this is not a viable approach.

  7. Note that without filtering the boundaries will not move and hence the design cannot move away from the solid bar starting guess.

References

  • Aage N, Sigmund O (2013) Density interpolations for electromagnetic topology optimization schemes. in preparation

  • Aage N, Nobel-Jørgensen M, Andreasen C, Sigmund O (2013) Interactive topology optimization on hand-held devices. Struct Multidiscip Optim 47:1–6. doi:10.1007/s00158-012-0827-z

    Google Scholar 

  • Allaire G, Francfort GA (1993) A numerical algorithm for topology and shape optimization. In: Bendsøe MP, Soares Mota CA (eds) Topology optimization of structures. Kluwer, Boston, pp 239–248

    Google Scholar 

  • Allaire G, Kohn RV (1993) Topology optimization and optimal shape design using homogenization. In: Bendsøe MP, Soares Mota CA (eds) Topology design of structures. Kluwer, Boston, pp 207–218

    Google Scholar 

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng AnalBound Elemen 32(11):909–918. doi:10.1016/j.enganabound.2007.05.007

    MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Math 334(12):1125–1130. doi:10.1016/S1631-073X(02)02412-3

    MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    MathSciNet  MATH  Google Scholar 

  • Allaire G, de Gournay F, Jouve F, Toader A (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59–80

    MATH  Google Scholar 

  • Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var 1:55–69

    MathSciNet  MATH  Google Scholar 

  • Amstutz S (2011) Connections between topological sensitivity analysis and material interpolation schemes in topology optimization. Struct Multidiscip Optim 43(6):755–765. doi:10.1007/s00158-010-0607-6

    MathSciNet  MATH  Google Scholar 

  • Amstutz S, Novotny A (2010) Topological optimization of structures subject to von mises stress constraints. Struct Multidiscip Optim 41:407–420. doi:10.1007/s00158-009-0425-x

    MathSciNet  MATH  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43:1–16. doi:10.1007/s00158-010-0594-7. MATLAB code available online at: www.topopt.dtu.dk

    MATH  Google Scholar 

  • Ansola R, Vegueria E, Canales J, Tarrago J (2007) A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elem Anal Des 44(1–2):53–62. doi:10.1016/j.finel.2007.09.002

    Google Scholar 

  • Ansola R, Vegueria E, Canales J (2010) 3d compliant mechanisms synthesis by a finite element addition procedure. Finite Elem Anal Des 46(9):760–769. doi:10.1016/j.finel.2010.04.006

    Google Scholar 

  • Arnout S, Firl M, Bletzinger KU (2012) Parameter free shape and thickness optimisation considering stress response. Struct Multidiscip Optim 45:801–814. doi:10.1007/s00158-011-0742-8

    MATH  Google Scholar 

  • Beckers M (1999) Topology optimization using a dual method with discrete variables. Struct Optim 17(1):14–24

    MathSciNet  Google Scholar 

  • Beckers M (2000) Dual methods for discrete structural optimization problems. Int J Numer Meth Eng 48:1761–1784

    MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization-theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bendsøe MP, Díaz AR, Kikuchi N (1993) Topology and generalized layout optimization of elastic structures. In: Bendsøe MP, Soares Mota CA (eds) Topology design of structures. Kluwer, Boston, pp 159–206

    Google Scholar 

  • Bendsøe MP, Guedes JM, Haber RB, Pedersen P, Taylor JE (1994) An analytical model to predict optimal material properties in the context of optimal structural design. Trans ASME J Appl Mech 61(4):930–937

    MathSciNet  Google Scholar 

  • Bletzinger KU, Maute K (1997) Towards generalized shape and topology optimization. Eng Optim 29(1–4):201–216

    Google Scholar 

  • Bonnet M, Guzina B (2004) Sounding of finite solid bodies by way of topological derivative. Int J Numer Methods Eng 61(13):2344–2373

    MathSciNet  MATH  Google Scholar 

  • Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Methods Eng 8(4):351– 385

    MathSciNet  MATH  Google Scholar 

  • Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190:4911–4928

    MathSciNet  MATH  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41:77–107. doi:10.1002/fld.426

    MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    MathSciNet  MATH  Google Scholar 

  • Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var 9:19–48

    MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    MATH  Google Scholar 

  • Burger M, Osher S (2005) A survey in mathematics for industry—a survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16:263–301. doi:10.1017/S0956792505006182

    MathSciNet  MATH  Google Scholar 

  • Burger M, Stainko R (2006) Phase-field relaxation of topology optimization with local stress constraints. SIAM J Control Optim 45(4):1447–1466. doi:10.1137/05062723X

    MathSciNet  MATH  Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362. doi:10.1016/j.jcp.2003.09.033

    MathSciNet  MATH  Google Scholar 

  • Cea J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188:713–726

    MathSciNet  MATH  Google Scholar 

  • Challis V, Guest J (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79(10):1284–1308. doi:10.1002/nme.2616

    MathSciNet  MATH  Google Scholar 

  • Challis V, Roberts A, Wilkins A (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45(14–15):4130–4146. doi:10.1016/j.ijsolstr.2008.02.025

    MATH  Google Scholar 

  • Challis VJ (2010) A discrete level-set topology optimization code written in matlab. Struct Multidiscip Optim 41(3):453–464. doi:10.1007/s00158-009-0430-0

    MathSciNet  MATH  Google Scholar 

  • Chen B, Kikuchi N (2001) Topolgy optimization with design-dependent loads. Finite Elem Anal Des 37:57–70

    MATH  Google Scholar 

  • Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44(1):1–18. doi:10.1007/s00158-011-0660-9

    MathSciNet  MATH  Google Scholar 

  • Cheng GD, Guo X (1997) 𝜖-relaxed approach in topology optimization. Struct Optim 13:258–266

    Google Scholar 

  • Cheng GD, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20:129–148

    Google Scholar 

  • Cho S, Ha SH (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38:53–70. doi:10.1007/s00158-008-0266-z

    MathSciNet  MATH  Google Scholar 

  • Christiansen A, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen J (2013) Topology optimization using an explicit interface representation. in preparation

  • de Ruiter M, van Keulen F (2004) Topology optimization using a topology description function. Struct Multidiscip Optim 26(6):406–416. doi:10.1007/s00158-003-0375-7

    Google Scholar 

  • Deaton J, Grandhi R (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 1–38. doi:10.1007/s00158-013-0956-z

  • Díaz AR, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45

    Google Scholar 

  • Du J, Olhoff N (2004a) Topological optimization of continuum structures with design-dependent surface loading-Part I: new computational approach for 2D problems. Struct Multidiscip Optim 27:151–165

    MathSciNet  MATH  Google Scholar 

  • Du J, Olhoff N (2004b) Topological optimization of continuum structures with design-dependent surface loading—Part II: algorithm and examples for 3D problems. Struct Multidiscip Optim 27:166–177

    MathSciNet  MATH  Google Scholar 

  • Dühring MB, Sigmund O, Feurer T (2010) Design of photonic-bandgap fibers by topology optimization. J Opt Soc Am B 27:51–58

    Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress coinstraints. Int J Numer Methods Eng 43(8):1453–1478

    MATH  Google Scholar 

  • Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distributions. In: 7th symposium on multidiciplinary analysis and optimization, AIAA/USAF/NASA/ISSMO, AIAA-98-4906, pp 1501–1509

  • Erentok A, Sigmund O (2011) Topology optimization of sub-wavelength antennas. IEEE Trans Antennas Propag 59(1):58–69. doi:10.1109/TAP.2010.2090451

    Google Scholar 

  • Eringen A (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703. doi:10.1063/1.332803

    Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Google Scholar 

  • FE-Design (2011) Tosca structure manual. FE-Design GMBH, version 7.1 edn., www.fe-design.com

  • Fuchs MB, Shemesh NNY (2004) Density-based topological design of structures subjected to water pressure using a parametric loading surface. Struct Multidiscip Optim 28(1):11–19

    Google Scholar 

  • Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192. doi:10.1007/s00158-004-0508-7

    MathSciNet  MATH  Google Scholar 

  • Gill P, Murray W, Saunders MA (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131

    MathSciNet  MATH  Google Scholar 

  • Gomes A, Suleman A (2006) Application of spectral level set methodology in topology optimization. Struct Multidiscip Optim 31(6):430–443. doi:10.1007/s00158-006-0005-2

    MathSciNet  MATH  Google Scholar 

  • Guest J (2009a) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37(5):463–473. doi:10.1007/s00158-008-0250-7

    MathSciNet  MATH  Google Scholar 

  • Guest J (2009b) Topology optimization with multiple phase projection. Comput Method Appl Mech Eng 199(1–4):123–135. doi:10.1016/j.cma.2009.09.023

    MathSciNet  MATH  Google Scholar 

  • Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    MathSciNet  MATH  Google Scholar 

  • Guest J, Asadpoure A, Ha SH (2011) Eliminating beta-continuation from heaviside projection and density filter algorithms. Struct Multidiscip Optim 44(4):443–453. doi:10.1007/s00158-011-0676-1

    MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhang L (2013) Robust structural topology optimization considering boundary uncertainties. Comput Methods Appl Mech Eng 253:356–368. doi:10.1016/j.cma.2012.09.005

    Google Scholar 

  • Haber RB, Bendsøe MP, Jog CS (1996) Perimeter constrained topology optimization of continuum structures. In: IUTAM symposium on optimization of mechanical systems (Stuttgart, 1995). Kluwer, Dordrecht, pp 113–120

  • Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subjected to pressure loading. Struct Multidiscip Optim 19:85–92

    Google Scholar 

  • Huang X, Xie YM (2010a) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41:671–683. doi:10.1007/s00158-010-0487-9

    MathSciNet  Google Scholar 

  • Huang Y, Xie YM (2010b) Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load. Struct Eng Mech 34(5):581–595

    Google Scholar 

  • Jansen M, Lazarov B, Schevenels M, Sigmund O (2013) On the similarities between micro/nano lithography and topology optimization projection methods. Struct Multidiscip Optim 1–14. doi:10.1007/s00158-013-0941-6

  • Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B 22(6):1191–1198

    Google Scholar 

  • Jensen JS, Sigmund O (2011) Topology optimization for nano-photonics. Laser Photonics Rev 5(2):308–321. doi:10.1002/lpor.201000014

    Google Scholar 

  • Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226

    MathSciNet  MATH  Google Scholar 

  • Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim:1–6. doi:10.1007/s00158-010-0562-2

  • Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Yamasaki S, Nishiwaki S (2013) Topology optimization by a time-dependent diffusion equation. Int J Numer Methods Eng 93(8):795–817. doi:10.1002/nme.4407

    MathSciNet  Google Scholar 

  • Kim DH, Lee SB, Kwak BM, Kim HG, Lowther D (2008) Smooth boundary topology optimization for electrostatic problems through the combination of shape and topological design sensitivities. IEEE Trans Magn 44(6):1002–1005

    Google Scholar 

  • Kita E, Toyoda T (2000) Structural design using cellular automata. Struct Multidiscip Optim 19(1):64–73

    Google Scholar 

  • Klarbring A, Torstenfelt B (2010) Dynamical systems and topology optimization. Struct Multidiscip Optim 42(2):179–192. doi:10.1007/s00158-010-0479-9

    MathSciNet  MATH  Google Scholar 

  • Kocvara M, Stingl M, Zowe J (2008) Free material optimization: recent progress. Optimization 57(1):79–100. doi:10.1080/02331930701778908

    MathSciNet  MATH  Google Scholar 

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 3:311–326. doi:10.1007/s00158-012-0782-8

    MathSciNet  Google Scholar 

  • Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip Optim 42(4):495–516

    Google Scholar 

  • Lazarov B, Sigmund O (2011) Filters in topology optimization as a solution to Helmholtz type differential equation. Int J Numer Methods Eng 86(6):765–781. doi:10.1002/nme.3072

    MathSciNet  MATH  Google Scholar 

  • Lazarov B, Schevenels M, Sigmund O (2012a) Topology optimization considering material and geometric uncertainties using sparse grid stochastic collocation method. Struct Multidiscip Optim 46:597–612. doi:10.1007/s00158-012-0791-7

    MathSciNet  MATH  Google Scholar 

  • Lazarov B, Schevenels M, Sigmund O (2012b) Topology optimization with geometric uncertainties by perturbation techniques. Int J Numer Methods Eng 90(11):1321–1336. doi:10.1002/nme.3361

    MATH  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620. doi:10.1007/s00158-009-0440-y

    Google Scholar 

  • Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9–12):985–996. doi:10.1016/j.cma.2010.10.004

    MathSciNet  MATH  Google Scholar 

  • Liu Z, Korvink JG, Huang R (2005) Structure topology optimization: fully coupled level set method via FEMLAB. Struct Multidiscip Optim 29(6):407–417

    MathSciNet  MATH  Google Scholar 

  • Luo Z, Tong L, Wang M, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705. doi:10.1016/j.jcp.2007.08.011

    MathSciNet  MATH  Google Scholar 

  • Luo J, Luo Z, Chen S, Tong L, Wang MY (2008a) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331

    MATH  Google Scholar 

  • Luo Z, Wang M, Wang S, Wei P (2008b) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76(1):1–26. doi:10.1002/nme.2092

    MathSciNet  MATH  Google Scholar 

  • Luo Y, Wang M, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Eng 254:31–41. doi:10.1016/j.cma.2012.10.019

    MathSciNet  Google Scholar 

  • Mattheck C, Burkhardt S (1990) A new method of structural shape optimization based on biological growth. Int J Fatigue 12(3):185–190

    Google Scholar 

  • Maute K, Ramm E (1995) General shape optimizationan integrated model for topology and shape optimization. In: Olhoff N, Rozvany G (eds) Proceedings of the first world congress of structural and multidisciplinary optimization. Pergamon, Oxford, pp 299–306

    Google Scholar 

  • Maute K, Kreissl S, Makhija D, Yang R (2011) Topology optimization of heat conduction in nanocomposites. In: 9th world congress on structural and multidisciplinary optimization. Shizuoka, Japan

  • Mei Y (2004) A level set method for structural topology optimization and its applications. Adv Eng Softw 35(7):415–441. doi:10.1016/j.advengsoft.2004.06.004

    MATH  Google Scholar 

  • Michell AGM (1904) The limit of economy of material in frame structures. Philos Mag 8(6):589–597

    MATH  Google Scholar 

  • Missoum S, Gurdal Z, Setoodeh S (2005) Study of a new local update scheme for cellular automata in structural design. Struct Multidiscip Optim 29(2):103–112. doi:10.1007/s00158-004-0464-2

    Google Scholar 

  • Misztal M, Bærentzen J (2012) Topology adaptive interface tracking using the deformable simplicial complex. ACM Trans Graph 31(3):24:1–24:12. doi:10.1145/2167076.2167082

    Google Scholar 

  • Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Optim 5:64–69

    Google Scholar 

  • Niordson FI (1983) Optimal design of plates with a constraint on the slope of the thickness function. Int J Solids Struct 19:141–151

    MATH  Google Scholar 

  • Norato J, Haber R, Tortorelli D, Bendsoe M (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60(14):2289–2312

    MathSciNet  MATH  Google Scholar 

  • Norato J, Bendsøe M, Haber R, Tortorelli D (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33:375–386. doi:10.1007/s00158-007-0094-6

    MathSciNet  MATH  Google Scholar 

  • Novotny A, Feijoo R, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192(7–8):803–829. doi:10.1016/S0045-7825(02)00599-6

    MathSciNet  MATH  Google Scholar 

  • Novotny A, Feijoo R, Taroco E, Padra C (2007) Topological sensitivity analysis for three-dimensional linear elasticity problem. Comput Methods Appl Mech Eng 196(41):4354–4364

    MathSciNet  MATH  Google Scholar 

  • Olhoff N, Bendsøe MP, Rasmussen J (1992) On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89:259–279

    Google Scholar 

  • Olsson E, Kreiss G (2005) A conservative level set method for two phase flow. J Comput Phys 210(1):225–246. doi:10.1016/j.jcp.2005.04.007

    MathSciNet  MATH  Google Scholar 

  • Olsson E, Kreiss G, Zahedi S (2007) A conservative level set method for two phase flow ii. J Comput Phys 225(1):785–807. doi:10.1016/j.jcp.2006.12.027

    MathSciNet  MATH  Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, New York

    MATH  Google Scholar 

  • Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed-algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    MathSciNet  MATH  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S (2011) Level set-based topology optimisation of a compliant mechanism design using mathematical programming. Mech Sci 2(1):91–98

    Google Scholar 

  • Papalambros PY, Chirehdast M (1993) Integrated structural optimization system. In: Bendsøe MP, Mota Soares CA (eds) Topology design of structures. Kluwer, Boston, pp 501–514

    Google Scholar 

  • Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50(12):2683–2705

    MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Google Scholar 

  • Petersson J (1999) A finite element analysis of optimal variable thickness sheets. SIAM J Num Anal 36:1759–1778

    MathSciNet  MATH  Google Scholar 

  • Petersson J, Sigmund O (1998) Slope constrained topology optimization. IInt J Numer Methods Eng 41(8):1417–1434

    MathSciNet  MATH  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41:117–131

    MathSciNet  MATH  Google Scholar 

  • Qian X, Sigmund O (2012) Topological design of electromechanical actuators with robustness toward over-and under-etching. Comput Method Appl Mech Eng 253:237–251

    MathSciNet  Google Scholar 

  • Raulli M, Maute K (2005) Topology optimization of electrostatically actuated microsystems. Struct Multidiscip Optim 30(5):342–359

    Google Scholar 

  • Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237. doi:10.1007/s00158-007-0217-0

    MathSciNet  MATH  Google Scholar 

  • Rozvany G, Sobieszczanski-Sobieski J (1992) New optimality criteria methods: forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections. Struct Optim 4:244–246. doi:10.1007/BF01742752

    Google Scholar 

  • Ru C, Aifantis E (1993) A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech 101:59–68. doi:10.1007/BF01175597

    MathSciNet  MATH  Google Scholar 

  • Schevenels M, Lazarov B, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Method Appl Mech Eng 200(49–52):3613–3627. doi:10.1016/j.cma.2011.08.006

    MATH  Google Scholar 

  • Schury F, Stingl M, Wein F (2012) Slope constrained material design. Struct Multidiscip Optim 46:813–827. doi:10.1007/s00158-012-0795-3

    MathSciNet  MATH  Google Scholar 

  • Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Method Appl Mech Eng 199(49–52):3270–3296. doi:10.1016/j.cma.2010.06.033

    MathSciNet  MATH  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    MathSciNet  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Google Scholar 

  • Sigmund O (2001a) A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim 21:120–127. doi:10.1007/s001580050176. MATLAB code available online at: www.topopt.dtu.dk

    Google Scholar 

  • Sigmund O (2001b) Design of multiphysics actuators using topology optimization-part II: two-material structures. Comput Method Appl Mech Eng 190(49–50):6605–6627. doi:10.1016/S0045-7825(01)00252-3

    Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239. doi:10.1007/s10409-009-0240-z

    MATH  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589–596. doi:10.1007/s00158-011-0638-7

    MathSciNet  MATH  Google Scholar 

  • Sigmund O, Clausen P (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Method Appl Mech Eng 196(13–16):1874–1889

    MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim 46(4):471–475. doi:10.1007/s00158-012-0814-4

    MathSciNet  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    MathSciNet  Google Scholar 

  • Sokołowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Opt 37:1251–1272

    MATH  Google Scholar 

  • Stolpe M, Bendsøe M (2010) Global optima for the Zhou-Rozvany problem. Struct Multidiscip Optim 43:151–164. doi:10.1007/10.1007

    Google Scholar 

  • Stolpe M, Svanberg K (2001a) An alternative interpolation scheme for minimum compliance optimization. Struct Multidiscip Optim 22(2):116–124. doi:10.1007/s001580100129

    Google Scholar 

  • Stolpe M, Svanberg K (2001b) On the trajectories of penalization methods for topology optimization. Struct Multidiscip Optim 21:128–139

    Google Scholar 

  • Suresh K (2010) A 199-line matlab code for pareto-optimal tracing in topology optimization. Struct Multidiscip Optim 42:665–679. doi:10.1007/s00158-010-0534-6

    MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    MathSciNet  MATH  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573. doi:10.1137/S1052623499362822

    MathSciNet  MATH  Google Scholar 

  • Svanberg K, Werme M (2006) Topology optimization by a neighbourhood search method based on efficient sensitivity calculations. Int J Numer Methods Eng 67(12):1670–1699. doi:10.1002/nme.1677

    MathSciNet  MATH  Google Scholar 

  • Talischi C, Paulino G, Pereira A, Menezes I (2012) Polytop: a matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45:329–357. doi:10.1007/s00158-011-0696-x

    MathSciNet  MATH  Google Scholar 

  • van Dijk N, Langelaar M, van Keulen F (2012) Explicit level-set-based topology optimization using an exact heaviside function and consistent sensitivity analysis. Int J Numer Methods Eng 91(1):67–97. doi:10.1002/nme.4258

    MathSciNet  MATH  Google Scholar 

  • van Dijk N, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 1–36. doi:10.1007/s00158-013-0912-y

  • Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-fem and level set description. Struct Multidiscip Optim 33(4–5):425–438. doi:10.1007/s00158-006-0091-1

    Google Scholar 

  • Vigdergauz SB (1999) Energy-minimizing inclusions in a planar elastic structure with macroisotropy. Struct Optim 17(2–3):104–112

    Google Scholar 

  • Wächter A, Biegler L (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

    MathSciNet  MATH  Google Scholar 

  • Wall W, Frenzel M, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33–40):2976–2988. doi:10.1016/j.cma.2008.01.025

    MathSciNet  MATH  Google Scholar 

  • Wallin M, Ristinmaa M, Askfelt H (2012) Optimal topologies derived from a phase-field method. Struct Multidiscip Optim 45(2):171–183. doi:10.1007/s00158-011-0688-x

    MathSciNet  MATH  Google Scholar 

  • Wang M, Wang X (2004a) Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496. doi:10.1016/j.cma.2003.10.008

    MATH  Google Scholar 

  • Wang M, Wang X (2004b) Pde-driven level sets, shape sensitivity and curvature flow for structural topology optimization. Comput Model Eng Sci 6(4):373–395

    MATH  Google Scholar 

  • Wang M, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566

    MathSciNet  MATH  Google Scholar 

  • Wang S, Wang M (2006a) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922

    MATH  Google Scholar 

  • Wang S, Wang M (2006b) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12). doi:10.1002/nme.1536

  • Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    MATH  Google Scholar 

  • Wang M, Zhou S, Ding H (2004a) Nonlinear diffusions in topology optimization. Struct Multidicip Optim 28(4):262–276. doi:10.1007/s00158-004-0436-6

    MathSciNet  MATH  Google Scholar 

  • Wang X, Wang M, Guo D (2004b) Structural shape and topology optimization in a level-set-based framework of region representation. Struct Multidiscip Optim 27(1–2):1–19. doi:10.1007/s00158-003-0363-y

    Google Scholar 

  • Wang SY, Lim KM, Khoo BC, Wang MY (2007) An unconditionally time-stable level set method and its application to shape and topology optimization. Comput Model Eng Sci 21(1):1–40

    MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784. doi:10.1007/s00158-010-0602-y

    MATH  Google Scholar 

  • Wei P, Wang M (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78(4):379–402. doi:10.1002/nme.2478

    MATH  Google Scholar 

  • Wei P, Wang M, Xing X (2010) A study on x-fem in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719. doi:10.1016/j.cad.2009.12.001

    Google Scholar 

  • Wu CH, Tseng KY (2010) Topology optimization of structures using modified binary differential evolution. Struct Multidiscip Optim 42:939–953

    Google Scholar 

  • Xia Q, Shi T, Liu S, Wang M (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90–91:55–64. doi:10.1016/j.compstruc.2011.10.009

    Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Google Scholar 

  • Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside funtions. Struct Mulidiscip Optim 41:495–505

    MathSciNet  MATH  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891. doi:10.1016/j.cma.2010.05.013

    MathSciNet  MATH  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S (2011) A level set-based topology optimization method for maximizing thermal diffusivity in problems including design-dependent effects. J Mech Des 133(3):031011. doi:10.1115/1.4003684

    Google Scholar 

  • Yamasaki S, Nomura T, Kawamoto A, Sato K, Izui K, Nishiwaki S (2010) A level set based topology optimization method using the discretized signed distance function as the design variables. Struct Multidiscip Optim 41(5):685–698

    MathSciNet  MATH  Google Scholar 

  • Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868. doi:10.1002/nme.3135

    MathSciNet  MATH  Google Scholar 

  • Yoon GH, Sigmund O (2008) A monolithic approach for topology optimization of electrostatically actuated devices. Comput Methods Appl Mech Eng 197:4062–4075. doi:10.1016/j.cma.2008.04.004

    MathSciNet  MATH  Google Scholar 

  • Yoon GH, Jensen JS, Sigmund O (2007) Topology optimization for acoustic structure interaction problems. Int J Numer Methods Eng 70(9):1049–1075

    MathSciNet  MATH  Google Scholar 

  • Young V, Querin OM, Steven GP, Xie YM (1999) 3D and multiple load case bi-directional evolutionary structural optimization (BESO). Struct Optim 18(2–3):183–192

    Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Google Scholar 

  • Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21:80–83

    Google Scholar 

  • Zuo Z, Xie Y, Huang X (2012) Evolutionary topology optimization of structures with multiple displacement and frequency constraints. Adv Struct Eng 15(2):359–372

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Sigmund.

Additional information

Grants: The first author appreciates the support from the Villum Foundation through the grant: “NextTop”. The second author acknowledges the support of the National Science Foundation under grant EFRI-1038305. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organization. This work was partially performed during the first authors sabbatical leave at University of Colorado Boulder.

Appendix

Appendix

1.1 A Matlab threshold code

The Matlab script shown below is intended as a post-processing step that converts a grey scale design obtained with the 99-line code (Sigmund 2001a) to a discrete design satisfying the volume fraction constraint.

In the script, the total volume includes the volume taken up by low-density elements. If the discrete approach does not include low-density elements, the third line above can simply be changed to

‘For the more compact 88-line code (Andreassen et al. 2011) the FE-part of above script should be substituted with the following

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigmund, O., Maute, K. Topology optimization approaches. Struct Multidisc Optim 48, 1031–1055 (2013). https://doi.org/10.1007/s00158-013-0978-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-0978-6

Keywords

Navigation