iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00034-022-02081-9
Modification of Chebyshev Pseudospectral Method to Minimize the Gibbs Oscillatory Behaviour in Resynthesizing Process | Circuits, Systems, and Signal Processing Skip to main content
Log in

Modification of Chebyshev Pseudospectral Method to Minimize the Gibbs Oscillatory Behaviour in Resynthesizing Process

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The Gibbs phenomenon describes oscillations of small or large amplitudes that occur, when a signal with steep gradients or noise components is approximated. Such interruptions can degrade the quality of desired signal. Reduction of such oscillations is an essential task to extract vital information from the desired signal. This paper, therefore, presents the Chebyshev spectral method (CSM) that is combined with two novel concepts to reduce the influence of oscillatory structures. The first notion uses a thresholding approach to estimate true expansion coefficients in a noisy environment, while the second concept introduces a new smoothing function. The basic framework of the proposed concept is to introduce an additional threshold procedure into pre-existing Chebyshev collocation method to handle the fluctuations of noise interferences. Moreover, the CSM is the global-behaviour approximation based on the points of an entire domain, which allows for high-order convergence to be recovered. The method is implemented for sharp gradient-contained function and to a signal that has been distorted by noise. Through computational experiments, efficiency of the proposed method is verified graphically and numerically. Signal-to-noise ratio of 37.4810 dB is achieved with corresponding mean square error about 1.79e−04. The percentage root-mean-square difference (PRD) and maximum error are obtained as 1.3402% and 0.0399, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

For this work, the authors have not used any data.

References

  1. R. Archibald, A. Gelb, A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. IEEE Trans. Med. Imaging 21(4), 305–319 (2002)

    Article  Google Scholar 

  2. L.K. Balyan, A.K. Mittal, M. Kumar, M. Choube, Stability analysis and highly accurate numerical approximation of Fisher’s equations using pseudospectral method. Math. Comput. Simul. 117, 86–104 (2020)

    Article  MathSciNet  Google Scholar 

  3. L.K. Balyan, P. Dutt, R.K.S. Rathore, Least squares h-p spectral element methods for elliptic eigenvalue problems. Appl. Math. Comp. 218(19), 9596–9613 (2012)

    Article  MathSciNet  Google Scholar 

  4. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover, New York, 2001)

    MATH  Google Scholar 

  5. C.W. Clenshaw, H.J. Norton, The solution of nonlinear ordinary differential equations in Chebyshev Series. Comput. J. 6, 88–92 (1963)

    Article  MathSciNet  Google Scholar 

  6. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics (Springer, New York, 1988)

    Book  Google Scholar 

  7. S.G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image de-noising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  Google Scholar 

  8. P.R. Clement, On Completeness of basis functions used for signal analysis. SIAM Rev. 5(2), 131–139 (1963)

    Article  MathSciNet  Google Scholar 

  9. A.E. Cetin, M. Tofighi, Denosing using wavelets and projections onto the 11-ball. ArXiv e-prints 1406.2528 (2014).

  10. D.L. Donoho, Denoising via soft thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Article  Google Scholar 

  11. D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MathSciNet  Google Scholar 

  12. T.H. Fay, K.G. Schulz, The Gibbs’ phenomenon from a signal processing point of view. Int. J. Math. Educ. Sci. Technol. 32(6), 863–872 (2001)

    Article  MathSciNet  Google Scholar 

  13. D. Gottlieb, C.W. Shu, A. Solononoff, H. Vandeven, On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a non-periodic analytical function. J. Comput. Appl. Math. 43, 81–98 (1992)

    Article  MathSciNet  Google Scholar 

  14. D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MathSciNet  Google Scholar 

  15. P. Grandclement, Introduction to spectral methods. EAS Publ. Ser. 21, 153–180 (2006)

    Article  Google Scholar 

  16. D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26 (SIAM, Philadelphia, 1977)

    Book  Google Scholar 

  17. D. Gottlieb, J.S. Hestaven, Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)

    Article  MathSciNet  Google Scholar 

  18. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978)

    Article  Google Scholar 

  19. J. Hesthaven, R. Kirby, Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008)

    Article  MathSciNet  Google Scholar 

  20. J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems, vol. 21 (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  21. E. Hewitt, R.E. Hewitt, The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21(2), 129–160 (1979)

    Article  MathSciNet  Google Scholar 

  22. V.K. Ingle, J.G. Proakis, Digital Signal Processing Using MATLAB: A Problem Solving Companion (Cengage Learning, Boston, 2016)

    Google Scholar 

  23. A. J. Jerri, The Gibbs phenomenon in Fourier analysis. Splines and Wavelet Approxima (1998)

  24. D. Kosloff, H. Tal-Ezer, A modified Chebyshev pseudospectral method with an time step restriction. J. Comput. Phys. 104, 457–469 (1993)

    Article  MathSciNet  Google Scholar 

  25. H.O. Kreiss, J. Oliger, Stability of Fourier methods. SIAM J. Numer. Anal. 16, 421–433 (1979)

    Article  MathSciNet  Google Scholar 

  26. A. Kumar, G.K. Singh, R. Anand, A simple design method for the cosine-modulated filter banks using weighted constrained least square technique. J. Franklin Inst. 348(4), 606–621 (2011)

    Article  Google Scholar 

  27. C.L. Lanczos, Trigonometric Interpolation of Empirical and Analytic Functions. J. Math. Phys. 17, 123–199 (1938)

    Article  Google Scholar 

  28. A.A. Michelson, S.W. Stratton, Vi. a new harmonic analyser. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(272), 85–91 (1898)

    Article  Google Scholar 

  29. R. L. Mace, Reduction of the Gibbs Phenomenon via Interpolation Using Chebyshev Polynomials, Filtering and Chebyshev-Pade’ Approximations. Theses, Dissertations and Capstones, Paper 717 (2005).

  30. S.K. Mitra, Y. Kuo, Digital Signal Processing: A Computer-Based Approach, vol. 2 (McGraw-Hill, New York, 2006)

    Google Scholar 

  31. M. Niedzwiecki, W.A. Sethares, Smoothing of discontinuous signals: the competitive approach. IEEE Trans. Signal Processing 43(1), 1–12 (1995)

    Article  Google Scholar 

  32. A. Oppenheim, A. Willsky, I. Young, Signals and Systems (Prentice Hall, New York, 1983)

    MATH  Google Scholar 

  33. K.M. Prabhu, Window Functions and Their Applications in Signal Processing (CRC Press, New York, 2013)

    Book  Google Scholar 

  34. H. Rakshit, M. A. Ullah, A comparative study on window functions for designing efficient fir filter, in 2014 9th International Forum on Strategic Technology (IFOST). IEEE, pp. 91–96 (2014)

  35. J. Shen, T. Tang, L. L. Wang, Orthogonal polynomials and related approximation results, in Spectral Methods. Springer Series in Computational Mathematics, vol. 41. Springer, Berlin (2011)

  36. J.C. Slater, Electronic energy bands in metal. Phys. Rev. 45, 794–801 (1934)

    Article  Google Scholar 

  37. L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations. Unpublished text, available at http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html (1996).

  38. E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23, 1–10 (1986)

    Article  MathSciNet  Google Scholar 

  39. E. Tadmor, Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer 16, 305 (2007)

    Article  MathSciNet  Google Scholar 

  40. F. Ustina, Henry Wilbraham and Gibbs phenomenon in 1848. Hist. Math. 1(1), 83–84 (1974)

    Article  MathSciNet  Google Scholar 

  41. H. Wilbraham, On a certain periodic function. Cambridge Dublin Math. J. 3, 198–201 (1848)

    Google Scholar 

  42. K. Wright, Chebyshev collocation methods for ordinary differential equations. Comput. J. 6, 358–365 (1964)

    Article  MathSciNet  Google Scholar 

  43. H. Zhu, M. Ding, Y. Li, Gibbs phenomenon for fractional Fourier series. IET Signal Proc. 5(8), 728–738 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Funding

There is no funding organization for the supporting distribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Theorem: A.1: Accuracy of Chebyshev polynomial interpolation on unequally spaced points [38]

Let \(\phi\) be a function that belongs to \({\mathcal{H}}\) Hilbert space and \(\left\{ {\varsigma_{j}^{{\prime }} s} \right\}\) are the interpolation points that follows the density function given by Eq. (11). Assume \(N > 0\), for any \(N\epsilon {\mathbb{Z}}\), there exists an interpolation polynomial \(P_{N} \phi\) based on Chebyshev polynomials, which coincides with \(\phi\) exactly at \(\left\{ {\varsigma_{j}^{{\prime }} s} \right\}\). Correspondingly, the electrostatic potential is given as:

$$ z\left( \varsigma \right) = \mathop \int \limits_{ - 1}^{1} \Theta \left( \zeta \right)\ln \left( {\left| {\zeta - \varsigma } \right|} \right)d\zeta . $$
(A.1)

And defines the supremum of potential

$$ z^{\sup } = \underbrace {\sup }_{{\varsigma \epsilon \left[ { - 1,1} \right]}}z\left( \varsigma \right). $$
(A.2)

If \(\exists\) is an upper bound such that \(z^{{{\text{constt}}}} > z^{\sup }\), in a closed domain \(\left\{ {\zeta \epsilon {\mathbb{C}}: z\left( \varsigma \right) \le z^{{{\text{constt}}}} } \right\}, {\text{then}}\,\,\exists\) is a constant \(A > 0\), such that for each \(N\)

$$ \left| {P_{N} \phi \left( \varsigma \right) - \phi \left( \varsigma \right)} \right| \le \frac{A}{{\exp \left( {N\left( {z^{{{\text{constt}}}} - z^{\sup } } \right)} \right)}} , $$
(A.3)

for all \(\varsigma \epsilon \left[ { - 1,1} \right].\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, P., Balyan, L.K., Kumar, A. et al. Modification of Chebyshev Pseudospectral Method to Minimize the Gibbs Oscillatory Behaviour in Resynthesizing Process. Circuits Syst Signal Process 41, 6238–6265 (2022). https://doi.org/10.1007/s00034-022-02081-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02081-9

Keywords

Navigation