iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s00034-015-0035-3
A Time–Frequency Domain Blind Source Separation Method for Underdetermined Instantaneous Mixtures | Circuits, Systems, and Signal Processing Skip to main content
Log in

A Time–Frequency Domain Blind Source Separation Method for Underdetermined Instantaneous Mixtures

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We propose a new method for underdetermined blind source separation based on the time–frequency domain. First, we extract the time–frequency points that are occupied by a single source, and then, we use clustering methods to estimate the mixture matrix A. Second, we use the parallel factor (PARAFAC), which is based on nonnegative tensor factorization, to synthesize the estimated source. Simulations using mixtures of audio and speech signals show that this approach yields good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Abrard, Y. Deville, A time–frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

    Article  MATH  Google Scholar 

  2. A. Aissa-El-Bey, N. Linh-Trung, K. Abed-Meraim et al., Underdetermined blind separation of nondisjoint sources in the time–frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)

    Article  MathSciNet  Google Scholar 

  3. M. Aoki, M. Okamoto, S. Aoki et al., Sound source segregation based on estimating incident angle of each frequency component of input signals acquired by multiple microphones. Acoust. Sci. Technol. 22(2), 149–157 (2001)

    Article  Google Scholar 

  4. H. Becker, P. Comon, L. Albera et al., Multi-way space–time–wave-vector analysis for EEG source separation. Signal Process. 92(4), 1021–1031 (2012)

    Article  Google Scholar 

  5. A. Belouchrani, M.G. Amin, Blind source separation based on time–frequency signal representations. IEEE Trans. Signal Process. 46(11), 2888–2897 (1997)

    Article  Google Scholar 

  6. A. Belouchrani, M.G. Amin, N. Thirion-Moreau et al., Back to results source separation and localization using time–frequency distributions: a overview. IEEE Signal Process. Mag. 30(6), 97–107 (2013)

    Article  Google Scholar 

  7. S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  8. A. Cichocki, R. Zdunek, A.H. Phan et al., Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation (Wiley, New Jersey, 2009)

    Book  Google Scholar 

  9. L. Cohen, Time–frequency distributions—a review. Proc. IEEE 77(7), 941–981 (1989)

    Article  Google Scholar 

  10. P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  11. P. Comon, Blind identification and source separation in \(2\times 3\) under-determined mixtures. IEEE Trans. Signal Process. 52(1), 11–22 (2004)

    Article  MathSciNet  Google Scholar 

  12. P. Comon, Tensors: a brief introduction. Signal Process. Mag. 31(3), 44–53 (2014)

    Article  Google Scholar 

  13. L. De Lathauwer, J. Castaing, Blind identification of underdetermined mixtures by simultaneous matrix diagonalization. IEEE Trans. Signal Process. 56(3), 1096–1105 (2008)

    Article  MathSciNet  Google Scholar 

  14. Y. Deville, M. Benali, Differential source separation: concept and application to a criterion based on differential normalized kurtosis, in Proceedings of EUSIPCO, Tampere, Finland, 4–8 Sept 2000

  15. Y. Deville, S. Savoldelli, A second-order differential approach for underdetermined convolutive source separation, in: Proceedings of ICASSP 2001, Salt Lake City, USA, 2001

  16. T. Dong, Y. Lei, J. Yang, An algorithm for underdetermined mixing matrix estimation. Neurocomputing 104, 26–34 (2013)

    Article  Google Scholar 

  17. D.L. Donoho, M. Elad, Maximal sparsity representation via \(l_1\) minimization. Proc. Nat. Acad. Sci. 100, 2197–2202 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Févotte, A. Ozerov, Notes on nonnegative tensor factorization of the spectrogram for audio source separation: statistical insights and towards self-clustering of the spatial cues. Exploring Music Contents (Springer, Heidelberg, Berlin, 2011), pp. 102–115

    Google Scholar 

  19. C. Fevotte, C. Doncarli, Two contributions to blind source separation using time–frequency distributions. IEEE Signal Process. Lett. 11(3), 386–389 (2004)

    Article  Google Scholar 

  20. D. FitzGerald, M. Cranitch, E. Coyle, Non-negative tensor factorization for sound source separation, in Proceedings of Irish Signals and Systems Conference, pp. 8–12 (2005)

  21. D. FitzGerald, M. Cranitch, E. Coyle, Extended nonnegative tensor factorization models for musical sound source separation. Computational Intelligence and Neuroscience, Article ID 872425 (2008)

  22. S. Ge, J. Han, M. Han, Nonnegative mixture for underdetermined blind source separation based on a tensor algorithm. Circuits Syst. Signal Process. (2015). doi:10.1007/s00034-015-9969-8

  23. F. Gu, H. Zhang, W. Wang et al., PARAFAC-based blind identification of underdetermined mixtures using Gaussian mixture model. Circuits Syst. Signal Process. 33(6), 1841–1857 (2014)

    Article  MathSciNet  Google Scholar 

  24. R.A. Harshman, Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16 (1970)

  25. J. Herault, C. Jutten, Space or time adaptive signal processing by neural network models, in International Conference on Neural Networks for Computing, Snowbird, USA, 1986

  26. J. Herault, C. Jutten, Blind separation of sources. Part 1: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24(1), 1–10 (1991)

    Article  MATH  Google Scholar 

  27. J. Herault, C. Jutten, B. Ans, Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé. In \(10^{\circ }\) Colloque sur le traitement du signal et des images, FRA. GRETSI, Groupe d’Etudes du Traitement du Signal et des Images (1985)

  28. A. Hyvarinen, Blind source separation by nonstationarity of variance: a cumulant-based approach. IEEE Trans. Neural Netw. 12(6), 1471–1474 (2001)

    Article  Google Scholar 

  29. A. Jourjine, S. Rickard, O. Yilmaz, Blind separation of disjoint orthogonal signals: demixing n sources from 2 mixtures, in Proceedings of ICASSP 2000, Turkey, vol. 6, pp. 2986–2988 (2000)

  30. S. Kim, C.D. Yoo, Underdetermined blind source separation based on subspace representation. IEEE Trans. Signal Process. 57(7), 2604–2614 (2009)

    Article  MathSciNet  Google Scholar 

  31. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. M.S. Lewicki, T.J. Sejnowski, Learning overcomplete representations. Neural Comput. 12, 337–365 (2000)

    Article  Google Scholar 

  33. Y. Li, S.I. Amari, A. Cichocki et al., Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Process. 54(2), 423–437 (2006)

    Article  Google Scholar 

  34. D. Nion, K.N. Mokios, N.D. Sidiropoulos et al., Batch and adaptive PARAFAC-based blind separation of convolutive speech mixtures. IEEE Trans. Audio Speech Lang. Process. 18(6), 1193–1207 (2010)

    Article  Google Scholar 

  35. A. Ozerov, C. Févotte, R. Blouet, et al., Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011. IEEE, pp. 257–260 (2011)

  36. L. Parra, C. Spence, Convolutive blind separation of nonstationary sources. IEEE Trans. Audio Speech Lang. Process. 8(3), 320–327 (2000)

    Article  Google Scholar 

  37. D.T. Pham, J.F. Cardoso, Blind separation of instantaneous mixtures of non-stationary sources. IEEE Trans. Signal Process. 49(9), 1837–1848 (2001)

    Article  MathSciNet  Google Scholar 

  38. R. Qi, Y. Zhang, H. Li, Overcomplete blind source separation based on generalized Gaussian function and sl0 norm. Circuits Syst. Signal Process. (2014). doi:10.1007/s00034-014-9952-9

  39. V.G. Reju, S.N. Koh, I.Y. Soon, An algorithm for mixing matrix estimation in instantaneous blind source separation. Signal Process. 89(9), 1762–1773 (2009)

    Article  MATH  Google Scholar 

  40. S. Rickard, R. Balan, J. Rosca, Real-time time-frequency based blind source separation, in Proceedings of ICA 2001, San Diego, CA, 9–13 Dec 2001

  41. S. Rickard, O. Yilmaz, On the approximate w-disjoint orthogonality of speech, in ICASSP, Orlando, Florida, 13–17 May 2002

  42. P. Tichavsky, Z. Koldovsky, Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources. IEEE Trans. Signal Process. 59(3), 1037–1047 (2011)

    Article  Google Scholar 

  43. E. Vincent, S. Araki, P. Bofill, Signal separation evaluation campaign. In (SiSEC 2008)/Under-determined speech and music mixtures task results (2008), http://www.irisa.fr/metiss/SiSEC08/SiSEC_underdetermined/dev2_eval.html

  44. E. Vincent, First stereo audio source separation evaluation campaign: data, algorithms and results. Independent Component Analysis and Signal Separation (Springer, Berlin Heidelberg, 2007), pp. 552–559

    Book  Google Scholar 

  45. M. Weis, F. Romer, M. Haardt, et al., Multi-dimensional space–time–frequency component analysis of event related EEG data using closed-form PARAFAC, in IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP 2009, IEEE 2009, pp. 349–352 (2009)

  46. O. Yilmaz, S. Rickard, Blind separation of speech mixtures via time–frequency masking. IEEE Trans. Signal Process. 52(7), 1830–1847 (2004)

    Article  MathSciNet  Google Scholar 

  47. M. Zibulevsky, B.A. Pearlmutter, Blind source separation by sparse decomposition. Neural Comput. 13(4), 863–882 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor in chief, Dr. M. N. S. Swamy, for helpful comments and improving the presentation of this paper and anonymous reviewers for their valuable comments and suggestions for improving this paper. This work was supported in part by the National Natural Science Foundation of China under Grant 60872074 and 61271007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Chen, Y. & Liu, Z. A Time–Frequency Domain Blind Source Separation Method for Underdetermined Instantaneous Mixtures. Circuits Syst Signal Process 34, 3883–3895 (2015). https://doi.org/10.1007/s00034-015-0035-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0035-3

Keywords

Navigation