iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/bf01733889
Construction of phylogenetic trees for proteins and nucleic acids: Empirical evaluation of alternative matrix methods | Journal of Molecular Evolution Skip to main content

Advertisement

Log in

Construction of phylogenetic trees for proteins and nucleic acids: Empirical evaluation of alternative matrix methods

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The methods of Fitch and Margoliash and of Farris for the construction of phylogenetic trees were compared. A phenetic clustering technique - the UPGMA method — was also considered.

The three methods were applied to difference matrices obtained from comparison of macromolecules by immunological, DNA hybridization, electrophoretic, and amino acid sequencing techniques. To evaluate the results, we used the goodness-of-fit criterion. In some instances, the F-M and Farris methods gave a comparably good fit of the output to the input data, though in most cases the F-M procedure gave a much better fit. By the fit criterion, the UPGMA procedure was on the average better than the Farris method but not as good as the F-M procedure.

On the basis of the results given in this report and the goodness-of-fit criterion, it is suggested that where input data are likely to include overestimates as well as true estimates and underestimates of the actual distances between taxonomic units, the F-M method is the most reasonable to use for constructing phylogenies from distance matrices. Immunological, DNA hybridization, and electrophoretic data fall into this category. By contrast, where it is known that each input datum is indeed either a true estimate or an underestimate of the actual distance between 2 taxonomic units, the Farris procedure appears, on theoretical grounds, to be the matrix method of choice. Amino acid and nucleotide sequence data are in this category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F-M:

Fitch-Margoliash

UPGMA:

unweighted pair-group method using arithmetic averages

SD:

percent standard deviation

References

  • Benveniste, R.E., Todaro, G.J. (1976). Nature261, 101–108

    Google Scholar 

  • Bisbee, C.A., Baker, M.A., Wilson, A.C., Hadji-Azimi, I., Fischberg, M. (1977). Science195, 785–787

    Google Scholar 

  • Case, S.M. (1976). Ph. D. Thesis, Univ. of Calif., Berkeley

  • Champion, A.B., Prager, E.M., Wachter, D., Wilson, A.C. (1974). Microcomplement fixation. In: Biochemical and immunological taxonomy of animals, C.A. Wright, ed., p. 397. London: Academic Press

    Google Scholar 

  • Cronin, J.E., Sarich, V.M. (1975). J. Human Evol.4, 357–375

    Google Scholar 

  • Farris, J.S. (1972). Am. Natur.106, 645–668

    Google Scholar 

  • Farris, J.S. (1973). Syst. Zool.22, 50–54

    Google Scholar 

  • Farris, J.S. (1974). Evolution28, 158–160

    Google Scholar 

  • Fitch, W.M. (1977a). The phyletic interpretation of macromolecular sequence information. Simple methods. In: Major patterns in vertebrate evolution, M.K. Hecht et al., eds., p. 169. New York: Plenum Press

    Google Scholar 

  • Fitch, W.M. (1977b). The phyletic interpretation of macromolecular sequence information. Sample cases. In: Major patterns in vertebrate evolution, M.K. Hecht et al., eds., p. 211. New York: Plenum Press

    Google Scholar 

  • Fitch, W.M., Margoliash, E. (1967). Science155, 279–284

    Google Scholar 

  • Goodman, M., Barnabas, J., Matsuda, G., Moore, G.W. (1971). Nature233, 604–613

    Google Scholar 

  • Ho, C.Y.-K., Prager, E.M., Wilson, A.C., Osuga, D.T., Feeney, R.E. (1976). J. Mol. Evol.8, 271–282

    Google Scholar 

  • Jollès, J., Schoentgen, F., Jollès, P., Prager, E.M., Wilson, A.C. (1976). J. Mol. Evol.8, 59–78

    Google Scholar 

  • Kidd, K.K., Sgaramella-Zonta, L.A. (1971). Am. J. Hum. Genet.23, 235–252

    Google Scholar 

  • Kohne, D.E., Chiscon, J.A., Hoyer, B.H. (1972). J. Human Evol.1, 627–644

    Google Scholar 

  • Lakovaara, S., Saura, A., Falk, C.T. (1972). Evolution26, 177–184

    Google Scholar 

  • Maxson, L.R., Wilson, A.C. (1975). Syst. Zool.24, 1–15

    Google Scholar 

  • Moore, G.W., Barnabas, J., Goodman, M. (1973). J. Theor. Biol.38, 459–485

    Google Scholar 

  • Nei, M. (1971). Am. Natur.105, 385–398

    Google Scholar 

  • Nei, M. (1975). Molecular population genetics and evolution. Amsterdam: North Holland Pub. Co.

    Google Scholar 

  • Nei, M. (1977). J. Mol. Evol.9, 203–211

    Google Scholar 

  • Peacock, D., Boulter, D. (1975). J. Mol. Biol.95, 513–527

    Google Scholar 

  • Prager, E.M., Fowler, D.P., Wilson, A.C. (1976a). Evolution30, 637–649

    Google Scholar 

  • Prager, E.M., Wilson, A.C. (1976). J. Mol. Evol.9, 45–57

    Google Scholar 

  • Prager, E.M., Wilson, A.C., Osuga, D.T., Feeney, R.E. (1976b). J. Mol. Evol.8, 283–294

    Google Scholar 

  • Sarich, V.M. (1969a). Syst. Zool.18, 286–295

    Google Scholar 

  • Sarich, V.M. (1969b). Syst. Zool.18, 416–422

    Google Scholar 

  • Sarich, V.M. (1973). Nature245, 218–220

    Google Scholar 

  • Sarich, V.M. (1976). Trans. Zool. Soc. Lond.33, 165–171

    Google Scholar 

  • Sarich, V.M., Cronin, J.E. (1976). Molecular systematics of the primates. In: Molecular anthropology, M. Goodman and R.E. Tashian, eds., p. 139. New York: Plenum Press

    Google Scholar 

  • Sneath, P.H.A., Sokal, R.R. (1973). Numerical taxonomy. San Francisco: W.H. Freeman and Co.

    Google Scholar 

  • Wallace, D.G., King, M.-C., Wilson, A.C. (1973). Syst. Zool.22, 1–13

    Google Scholar 

  • Wilson, A.C., Carlson, S.S., White, T.J. (1977). Ann. Rev. Biochem.46, 573–639

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prager, E.M., Wilson, A.C. Construction of phylogenetic trees for proteins and nucleic acids: Empirical evaluation of alternative matrix methods. J Mol Evol 11, 129–142 (1978). https://doi.org/10.1007/BF01733889

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01733889

Key words

Navigation